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CHAPTER 1 – INTRODUCTION 

1.1 Statement of Problem 

Military and law enforcement agencies have seen an increase in the utilization of 

working canines both domestically and in foreign deployments.  The canine is critical in 

the detection of drugs and explosives, search and rescue, and deterrence.  Canines 

have proven to be an effective tool and will continue to be utilized in the future.  

Although protective body armor is commercially available, current designs are thought 

to be cumbersome and may contribute to fatigue and heat injuries in the working 

canines.  Also, the armor available is not tested to a canine specific standard.  For a 

safety system to be effective, it is imperative that canine protective equipment be 

designed, tested, and certified based on the anatomy and biomechanical response of a 

canine.   

1.2 Background and Significance 

1.2.1 Working Canines – History and Current Roles 

 During World War I the main duties of the enlisted canines included casualty 

canines, messenger canines, and sled canines.  Casualty canines traveled war zones 

looking for lost, injured, or deceased soldiers.  When a soldier was found, canines 

would pull the soldier to safety before alerting others.  Messenger canines were used for 

the exclusive purpose of getting messages, orders, or requests from one unit to another 

working between two handlers.  Sled canines were used in packs to deliver equipment, 

food, and supplies to mountainous regions.  These canines also searched for plane 

crash survivors and brought them to safety.  During this time the U.S. military did not 

train or breed the canines used. 
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 After the attack on Pearl Harbor the U.S. created the “Dogs for Defense” program 

which trained canines for military utilization.  Initially, the military asked U.S. citizens to 

donate their pet dogs to the war effort.  The canines were trained and used for purposes 

similar to those used in WWI with the addition of sentry and patrol duties.  Sentry 

canines were trained as guard dogs.  These canines would alert their handler to 

unrecognized movement or potential threats of a highly protected area.  Patrol canines 

led troops, traveling ahead to detect potential enemy snipers or possible ambushes.  

They were trained to alert handlers by stiffening their bodies and tail, raising their 

hackles, and keeping their ears up.   

 During the Korean War canines were employed mainly for sentry duty.  It was 

during the Vietnam War that their use became more sophisticated.  With a canine’s 

keen senses of smell and hearing they were used to detect enemy snipers and 

ambushes.  With their heightened senses they were also used to track fugitives and 

locate mines. During this time their duties continued to include guarding protected areas 

and alerting soldiers to potential dangers.   

 Following the Vietnam War, the need for military working dogs decreased 

markedly.  However, the drop in demand was not permanent since the demand from 

non-DoD (Department of Defense) government agencies began to increase.  The 

enhanced sensory characteristics of a canine made them appealing to agencies such 

as the Department of Justice, Department of Transportation and Treasury Department 

(Frost, 1990).  Detecting illegal drugs and explosives at airports became a new demand 

for military working dogs and the trainers.  Drug-sniffing canines are able to detect a 

broad range of illegal drugs despite efforts at concealment and are typically used at 
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airports, checkpoints, and other places where there is heightened security.  Explosive-

sniffing canines have the ability to detect small amounts of a variety of explosives.  This 

makes them very useful at checkpoints and entry points that must be made secure.  

Explosive-sniffing canines perform at or above 95 percent accuracy rate and can detect 

odors in many different areas such as offices, theaters, barracks, warehouses, luggage, 

and vehicles (Dawson, Marchand et al., 2001).   

This increase in demand was also felt throughout civilian law enforcement 

agencies.  Since they were proven to be loyal soldiers they were implemented into the 

law enforcement community. Canines are used in civilian law enforcement to apprehend 

suspects, track suspects or missing persons, and/or to guard a suspect once he/she is 

caught.  Police canines are also used as a non-lethal force and may also be trained to 

detect various narcotics and explosive materials.   

The German Shepherd Dog was the predominant breed acquired for military 

service until 1984, at which time the decision was made to also purchase the Belgian 

Malinois breed (Peterson, Frommelt et al., 2000).  German Shepherd Dogs have been 

the preferred standard because of the combination of their unique characteristics.  

Desirable characteristics for a working dog include intelligence, dependability, 

predictability, easy to train, usually moderately aggressive, and adaptable to almost any 

climatic condition. For specialized roles, detector dogs in particular, other breeds have 

been identified and used including smaller breeds.  Retrievers and some small-breed 

terriers have been used for their keen sense of smell, energy, and size.   
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1.2.2 Efficacy of Protective Body Armor in Humans 

The nature of most injuries resulting from military or law enforcement (Local, 

State, and Federal) activity reflects the weapon(s) predominately used in that region. 

The threats that are most common will dictate which protective body armor would be 

appropriate in preventing or mitigating injuries.  Flak jackets were used in previous wars 

and were effective against shrapnel but not bullets.  In an effort to address this, Kevlar® 

was developed following the Vietnam War. This fiber revolutionized protective armor, 

exhibiting desirable characteristics such as strength, weight, and flexibility.  The fibers 

could be woven together to create sheets which could then be layered to create a 

flexible ballistic resistant panel.  The layers would vary depending on the level of threat 

protection required.  Some vests may be supplemented with metal, ceramic, or 

polyethylene plates to provide additional protection.       

Personal body armor is designed to cover the torso, protecting vital organs from 

penetrating ballistic injuries. When impacted by a bullet or shrapnel, the woven fibers 

absorb and dissipate the energy over a large area, reducing injury severity and reducing 

the risk of the object entering the body.  Armor is designed to not only prevent life 

threatening injuries but also allow officers or soldiers to move to a safer position and 

return fire.   

 The most common threats faced by military personnel include explosives (IED 

and non-IED), gunshot wounds, blunt trauma, and burns (Mabry, Holcomb et al., 2000; 

Kotwal, Montgomery et al., 2011). Gunshot wounds and shrapnel are the most common 

causes of injury in the battlefield.  Studies have been published investigating the 

effectiveness of body armor in a military setting (Mabry, Holcomb et al., 2000; 
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Kosashvili, Hiss et al., 2005; Peleg, Rivkind et al., 2006).  A study analyzed casualty 

data collected during a conflict involving the U.S. Army Rangers in Somalia in 1993.  

This study found the wounding mechanisms of the casualties were bullets (55%), 

fragments (31%), blunt trauma (12%), and burns (2%) (Mabry, Holcomb et al., 2000).  

Most fatalities were caused by bullets entering through areas not covered by armor.  

According to the study, no projectiles entered through the anterior chest or upper 

abdomen where solid armor plates were worn.  Body armor reduced the mortality rates 

of injuries to the chest and prevented small fragment wounds to the abdomen (Mabry, 

Holcomb et al., 2000).   

A study by Peleg et al. evaluated civilian and military injury and outcome data to 

determine whether body armor proved to be effective (Peleg, Rivkind et al., 2006).  This 

study investigated records from the Israeli national trauma registry from October 1, 2000 

to December 31, 2003.  When comparing the unprotected civilians to the protected 

soldiers it was determined that armor reduces the presence and severity of injuries to 

the chest and the abdomen.  In a military setting protective helmets are also worn.  It 

was noted that the occurrence of head injury was more frequent in the unprotected 

civilians. Unfortunately, in this study the types of armor worn by the military personnel 

were not available in the database; therefore, the individual effectiveness of hard or soft 

armor against high velocity bullets cannot be confirmed based on this data set.  

Threats affecting civilian law enforcement vary from those experienced by 

military personnel.  According to the Law Enforcement Officers Killed and Assaulted 

(LEOKA) database, from 2004-2013 the weapons that law enforcement officers 

encountered most frequently included firearms, vehicles, and personal weapons (hands, 
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feet, etc.) (FBI-LEOKA). Of the officers assaulted and injured during this time the most 

commonly reported injuries resulted from personal weapons (28.6%), other dangerous 

weapons (23.9%), knife or other cutting objects (12.7%), and firearms (9.3%).  Law 

enforcement officers are most often feloniously killed by firearms (92.8%), more 

specifically handguns.  Of the 474 officers feloniously killed with a firearm from 2004 

through 2013, 72.8% of those officers lost their lives as a result of a handgun, followed 

by a rifle (18.4%), and a shotgun (8.4%). The most frequently reported handgun was a 9 

millimeter (26.7%) followed by the .40 caliber (19.4%).   

Although there are efforts to improve body armor and increase its use, there are 

few studies reporting the effectiveness of armor in civilian law enforcement.  LaTourette 

evaluated the effectiveness of armor for police officers and found that body armor more 

than triples the likelihood a police officer will survive a shooting to the torso 

(LaTourrette, 2010).  This study estimated that providing body armor to all police 

officers nationwide would save at least 8.5 lives per year.  According to  the LEOKA 

database, of the officers that were feloniously killed by a firearm from 2004 to 2013, 

35.0% were not wearing body armor (FBI-LEOKA).  Body armor use is also actively 

promoted by police organizations such as International Association of Chiefs of Police 

(IACP).  The IACP started an organization to bring recognition to those officers whose 

body armor saved their life. The IACP/DuPont™ Kevlar® Survivors’ Club® is a 

collaboration between IACP and DuPont which began in 1987 and has recognized over 

3,100 lives saved as a result of body armor (DuPont, 2013).   

The majority of law enforcement officer fatalities from a firearm while wearing 

body armor (2004 to 2013) are the result of a projectile entering above the shoulders 



7 
  

       
 

(head and neck) (68.8%) followed by anterior or posterior torso (30.5%) (FBI-LEOKA).  

The most common area of thoracic entry was reported to be the armhole or shoulder 

area (38.3%). The second most common cause was attributed to the bullet exceeding 

the certification level of the vest (velocity and/or caliber of bullet) and penetrating 

completely through the armor panel (18.1%).  Other areas of entry causing fatal injuries 

from torso wounds included between side panels, above or below the vest, or armor 

failure resulting in vest penetration.   

Researchers have proven that body armor is effective at minimizing the severity 

and preventing life threatening injuries to the thoracic cavity and upper abdomen (FBI-

LEOKA; Mabry, Holcomb et al., 2000; Peleg, Rivkind et al., 2006; LaTourrette, 2010). 

There is a continuing effort between researchers, manufacturers, and end users to 

investigate new body armor designs for both military and law enforcement to improve 

protection while still allowing the soldier or officer to be effective in the field.   

1.2.3 Injuries to Working Canines and Behind Armor Trauma 

Although the United States military has conducted studies regarding the cause of 

death in the military working canines, traumatic causes are not reported as major 

concerns (Dutton and Moore, 1987; Jennings and Butzin, 1992; Moore, Burkman et al., 

2001).  One study did investigate gunshot wounds in military canines and found the 

most common site of injury to be the thorax followed by extremity wounds (Baker, 

Havas et al., 2013).  Baker et al. investigated 29 injury cases resulting in a 38% survival 

rate. Wounds to the thoracic cavity were most likely to result in death of the canine. A 

recently published study investigated causes for emergency veterinary visits for police 

canines (Parr and Otto, 2013). German Shepherd Dogs (GSD) from police departments, 
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government, or security agencies that sought veterinary treatment at The Ryan 

Veterinary Hospital of the University of Pennsylvania were compared the pet GSD in the 

medical database from 2008 - 2010. Orthopedic injuries were significantly more 

common in law enforcement canines when compared to the pet canines.  Both groups 

of canines presented with trauma or wounds but there was no significant difference 

between the two cohorts.  Both studies are important in identifying the injuries that are 

experienced by military and law enforcement canines in the field.  Further data should 

be collected to identify in more detail the traumatic injuries sustained by military or law 

enforcement working canines as a result of their responsibilities. 

Even though body armor protects from life-threatening penetrating injuries, there 

is still a possibility of a less severe blunt trauma injury (Cannon, 2001). Blunt trauma 

injuries occur as the bullet’s energy is distributed over a larger area, generally resulting 

in injuries such as bruising, rib fractures, backface signature injuries, and/or lung 

contusions. Backface signature injuries are lacerations that occur because of blunt 

trauma (Wilhelm and Bir, 2007).   When the armor deformation is more localized the 

resulting injury is an open penetrating wound.  This occurs when the vest does not 

successfully distribute the energy over a large enough area. Behind armor blunt trauma 

has also been evaluated with animal and computer models to determine internal injuries 

that may occur as a result (DeMuth, 1968; Moseley, Vernick et al., 1970; Carroll and 

Soderstrom, 1978; Linden, Berlin et al., 1988; Roberts, O'Connor et al., 2005; Roberts, 

Ward et al., 2007; Merkle, Ward et al., 2008).   In a previously published study using a 

swine model, a variety of bullet calibers and velocities were used along with varying 

layers of Kevlar® protecting the swine thorax to ensure no penetration of the rounds 
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protections are available with the primary coverage area focusing on the thorax and 

upper abdomen (Figure 1.1). The currently manufactured armor is comprised of material 

which has been tested to the NIJ standard for ballistic resistance (NIJ-0101.06, 2008). 

This standard was developed using an anesthetized goat model for human protection.  

There is no canine specific standard in place and testing the armor materials to NIJ 

0101.6 standard may over-protect or under-protect the canines.  Given the immense 

expense incurred by Local, State, and Federal governments in acquiring, training, and 

maintaining these highly-skilled animals, it would seem advisable to establish the 

behind armor blunt trauma response for the canine thoracic cavity in order to determine 

the most effective way to protect these vital animals. 

1.3 Specific Aims 

Overall, there is very limited information in the literature regarding injuries 

sustained by canines used in civilian law enforcement and ways to protect them.  For a 

canine specific standard to be developed, the biomechanical response of a canine must 

be determined.  With this knowledge, improvements can be made to better the 

protection for working canines.  The specific aims for this project include: 

1.) Compile a database of canine casualties to determine commonly reported 

causes of death or need for euthanasia while in service for civilian law 

enforcement canines.   

2.) Evaluate the biomechanical response of the canine thorax to a behind armor 

blunt impact. 

3.) Identify an injury criterion that will best predict canine thoracic injuries 

resulting from behind armor blunt impact. 
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4.) Measure the correlation between the behind armor blunt trauma response 

and the standard backface testing medium (clay) to evaluate the current 

armor standard. 

5.) Evaluate currently manufactured canine body armor to determine if the armor 

inhibits the canine from performing tasks. 
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are joined by intersternebral cartilage (short blocks of cartilage).  The sternum of the 

canine is laterally compressed.  The first and the last sternebrae are unique.  The first 

sternebra is expanded and has lateral projections for the attachment of the first costal 

cartilage.  It is also longer than the others and is referred to as the manubrium.  The last 

sternebra, called the xiphoid process, is wide horizontally and thin vertically (Evans, 

2013).  A thin cartilaginous plate prolongs the xiphoid process caudally.   

 The sternal edge of the rib articulates with the intersternebral cartilage of the 

sternum, with the exception of the first pair, which articulates with the first sternebra.  

Succeeding rib cartilages articulate with successive intersternebral cartilages (Evans, 

2013).  However, the eighth and ninth costal cartilages articulate with the cartilage 

between the seventh sternebra and the xiphoid process.    

2.2.4 Musculature     

 The muscles of the vertebrae, for the most part, represent the trunk muscles.  

Aside from the cutaneous musculature, the muscles of the vertebrae are grouped into 

five layers (Figure 2.8).  The two superficial and part of the third layers control 

movement of the limbs, shoulder and neck.  The serratus ventralis, part of the third 

layer, supports the trunk and the movement of the trunk.  The musculature that 

comprises the remaining layers aid in inspiration and expiration, head and neck 

movement, lateral movement of the trunk, and fixation of vertebral column (Hermanson, 

2013).  
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The left lung of the canine is divided into two main lobes: the cranial and caudal 

lobe.  The cranial lobe is further divided into the cranial and caudal part.  The right lung 

is divided into cranial, middle, accessory, and caudal lobes.  The lungs span from the 

first rib to the diaphragm (Figure 2.10).  In the healthy canines, the greatest cranial 

encroachment of the diaphragm can be to the sixth intercostal space.  However, in 

certain conditions the diaphragm can be pushed farther into the thorax.  

2.3.3 The Heart 

The heart is covered in a fibrous, thin, tough sac called the pericardium and is 

the muscular pump of the cardiovascular system.  The cardiovascular system includes 

the heart and blood vessels and performs the function of pumping and carrying the 

blood to the rest of the body.  The heart is located between the lungs beginning at the 

level of the third rib through the sixth rib. Blood vessels form an intricate system 

throughout the body, carrying blood to all organs, tissues and cells.   

The canine’s heart is very similar to the human heart.  The heart has four 

chambers: a right and left atrium and a right and left ventricle.  The chambers on the 

right side receive blood from the body and send it out to the lungs to be replenished with 

oxygen.  Blood returns from the lungs to the left side of the heart, then the strong left 

ventricle pumps the oxygen enriched blood to the body.  Arteries are muscular blood 

vessels that move the oxygen rich blood to the body, while veins bring the oxygen 

depleted blood back to the heart and lungs. Capillaries are the smallest of all blood 

vessels and are the site of the greatest exchange material between the blood and tissue 

of the body.  
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2.4 Abdominal Cavity 

The abdomen is the portion of the canine’s body that extends from the 

diaphragm to the pelvis. The abdominal cavity is the largest cavity in their body.  The 

abdomen can be grouped into three regions as determined by transverse planes: 

cranial abdominal region, middle abdominal region, and caudal abdominal region 

(Evans, 1993).  The cranial abdominal region is still for the most part protected by the 

rib cage while the other regions are primarily muscle bound.  The liver, spleen, and 

stomach are included in the cranial region of the abdomen and are protected by the rib 

cage and diaphragm.   

2.5 Discussion  

There are a few differences in the thoracic cavity anatomy between humans and 

canines.  One obvious difference is the fact that canines are quadrupeds.  The normal, 

gravitational forces resulting from the mass of each anatomical structure are in the 

ventral-dorsal direction (anatomical equivalent of anterior-posterior in humans) in 

contrast to humans in which these are in the superior-inferior direction.  The general 

shape of the thoracic cavity of a canine is oval where the greatest measurement is in 

the ventral-dorsal direction.  For humans, the greatest thoracic cavity measurement is in 

the lateral direction.   

Due to these differences there is a potential that the canine thoracic response will 

differ from the human thoracic response.  In the literature, biomechanical response, 

injury mechanism, and tolerance studies have been aimed at preventing injuries in 

humans.  Therefore, canine specific data must be collected to establish a testing 

standard tailored the response of canines. 
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CHAPTER 3 – Review of Canine Deaths While in Service in Civilian Law 

Enforcement (2002 – 2012) 

A portion of this chapter was published in the Journal of Special Operations 

Medicine by Stojsih S, Baker J, Les C, and Bir C. The full manuscript can be found in 

Appendix B. 

3.1 Introduction 

The use of databases to track traumatic injuries in both civilian law enforcement 

and military has been well established (FBI-LEOKA; Eastridge, Costanzo et al., 2009; 

LaTourrette, 2010; Kotwal, Montgomery et al., 2011). Compiling these data assists in 

identifying common injuries and in more severe cases, causes of death.  With this 

knowledge, efforts to reduce or prevent these issues can be made.  For instance, 

protective armor has been proven to mitigate injuries and risk of human casualties 

(Mabry, Holcomb et al., 2000; LaTourrette, 2010). Collecting and tabulating these data 

not only helps identify lifesaving procedures but it is also essential in developing ways to 

improve protective equipment.  Although injury databases are fairly well developed for 

human medicine, they are lacking for veterinary medicine more specifically, the working 

canine population. 

Currently, there is no centralized method of tracking traumatic injuries or 

illnesses in working canines used in civilian law enforcement. However, there has been 

established a working canine memorial website that has created an extensive list of 

canines that have died or were euthanized while in service (CPWDA, 1991). At the time 

of this review, according to the website, 1,867 military working and law enforcement 

working canines have reportedly died in service from 1940-present (CPWDA, 1991).  
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There are obvious limitations with lists created from non-clinical sources when 

generating a scientific database.  However, given the lack of availability of this 

information, some useful generalizations may be obtained from compiling and analyzing 

these data.  The current study consolidates the type of data that is available from the 

existing websites and reports the results based on traumatic and non-traumatic causes 

of death or euthanasia.  Gathering canine casualty data can potentially assist in better 

prevention and treatment of injuries in this specialized population of working canines.    

3.2 Methodology and Materials 

In an effort to delineate the key factors related to fatal outcomes, causes of death 

were investigated for working canines used in civilian law enforcement in the United 

States between the years of 2002-2012.   The primary website reporting these incidents 

is maintained by the Connecticut Police Work Dog Association (CPWDA) (CPWDA, 

1991).  Canines listed were killed or euthanized, while in service, from agencies across 

the U.S., various countries, and military. The Officer Down Memorial Page (ODMP) also 

has a program dedicated to fallen law enforcement canines in the U.S. that was 

launched in September 2012 (ODMP, 2012). Cases not listed on the CPWDA website 

but listed on ODMP were combined for the current study. Both websites are used as 

memorials and the data made available were self-reported by the handler or other 

contributors familiar with the incident (another handler, friend, spouse, etc.).   

Data listed on the websites are organized by year of incident.  Additional data 

that can be found on these websites include canine name, location, and cause of death. 

Data on the CPWDA website dates back to the Vietnam War, however, these data were 

difficult to verify and therefore all events that occurred before 2002 and/or outside the 
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United States were excluded from the study.  Military working dogs were also excluded 

since these websites are directed toward the law enforcement community and thus the 

military canines may be underrepresented. Finally, the time frame of the study was 

limited to create a more manageable and representative population of law enforcement 

canines by removing incidents occurring before 2002, two years after the CPWDA 

memorial site went on-line. 

Remaining data were organized and causes of death were tabulated and 

compared.  Causes of death were separated into two main categories “non-traumatic” 

and “traumatic”.  Deaths attributed to an illness or pathophysiology (i.e. cancer, gastric 

dilatation-volvulus (GDV), degenerative diseases, other medical conditions) were 

categorized as “non-traumatic.”  Deaths caused by an external circumstance that may 

have been prevented (i.e. blunt trauma, gunshot wound (GSW), falls, other accidents) 

were categorized as “traumatic.”  An attempt to gather further data from other online 

sources was made for each case.  Key criteria were used to ensure the incidents were 

identical when investigating for further information on the internet.  If two or more 

incidents shared the same date, canine name, location, and incident description, the 

incidents were considered to be coincident, and additional information was extracted.  

Details such as breed, age, and further description of incident or cause of death were 

the main focus.  In some cases, generally involving a traumatic cause of death such as 

ballistic trauma or heatstroke, detailed descriptions of the circumstance surrounding the 

incident (e.g. friendly fire, confinement heat injury) could be found and were recorded.  

There were a number of cases reported on the websites that had “unknown” listed as 
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the cause of death.  If further information could not be obtained, the case was not 

included in the data set.  

3.3 Results 

Between the years of 2002 and 2012, there were 867 law enforcement canines 

reported to the CPWDA or ODMP K9 databases as being killed or euthanized while in 

service in the US with a known cause of death.  Although breed information was not 

available for all cases (10.0%, n = 87), the majority of the cases of where breed 

information was obtained involved the German Shepherd Dog (48.7%, n = 422) followed 

by the Belgian Malinois (23.4%, n = 203).   

Traumatic causes of death made up 36.7% (n = 318) of those canines killed or 

euthanized (Table 3.1). Cases that were placed into the “Other” category include deaths 

caused by animal attack (n = 7), drowning (n = 5), fire or smoke inhalation (n = 3), and 

electrocution/lightning (n = 1) (Table 3.1). Non-traumatic causes of death made up 

63.3% (n = 549) of those killed or euthanized while in service (Table 3.2). Cases that 

were placed in the “Other” category include digestive (n = 14), hematopoietic problems 

(n = 9), neurological (n = 8), and respiratory (n = 7).  There was one case of accidental 

euthanasia (n = 1), euthanasia due to aggression (n = 10), autoimmune diseases (n = 

5), and allergic reactions (n = 4).   

 

 



28 
  

       
 

Table 3.1: 
Traumatic causes of death in law enforcement canines 

Traumatic Cause 
Number Of 

Cases 
Percent 

Non-Penetrating Blunt Trauma    
Struck by Vehicle         
Vehicle Crash 

82 
22 

25.8% 
6.9% 

Fall 16 5.0% 
Localized Impact  

Penetrating Trauma  
Ballistic 
Sharp Non-ballistic 

Heat Injury 
Airway Obstruction 

2 
 

73 
5 

79 

0.6% 
 

23.0% 
1.6% 

24.8% 
12 3.8% 

Ingested Toxin 11 3.5% 
Other  16 5.0% 

 
 

Table 3.2: 
Non-traumatic causes of death in law enforcement canines 

Non-Traumatic Cause Number Of Cases Percent 
Cancer  251 45.7% 
Gastric Dilatation Volvulus 66 12.0% 
Non-Specific 53 9.7% 
Cardiac  

Disease or Failure  
Heartworm 

 
31 
2 

 
5.6% 
0.4% 

Musculoskeletal  
Degenerative 
Spine/Bone 

 
16 
12 

 
2.9% 
2.2% 

Bacterial/Viral Infection 24 4.4% 
Anesthesia-related or Surgical 
Complications 

20 3.6% 

Other Specific Organ Systems 16 2.9% 
Other  58 10.6% 

 

Ballistic deaths could be additionally classified as: hostile ballistic attack while on 

duty, friendly fire while on duty, and hostile ballistic attack while the canine was not on 

duty (Table 3.3). Working canines used in civilian law enforcement are trained for 

various purposes (detection, apprehension, search and rescue, and sentries) but 

approximately 38% (n = 28) of the fatal incidents occurred while apprehending or 
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the United States. Overall, the current study found the most commonly reported causes 

of death to be cancer, blunt trauma caused by a vehicle strike, heat injury, and ballistic 

penetrating trauma.  Most of the non-traumatic causes of death are common issues with 

the canine in general, particularly for the specific breeds that are utilized in law 

enforcement. A recently published study investigated the occupational hazards and 

emergency room visits of police dogs.  The study compiled emergency veterinary 

records from law enforcement working canines, specifically German Shepherd Dogs, to 

one university veterinary hospital that had been contracted to provide all veterinary care 

to certain police departments, government, and security agencies (Parr and Otto, 2013)   

Primary complaints were explored; however, if deaths occurred during the study time 

frame these cases were not reported.  

The three most commonly reported non-traumatic causes of death in this study 

were cancer, gastric dilatation-volvulus (GDV), and non-specific causes.  In a previously 

published study, researchers investigated breed-specific causes of death, 

retrospectively utilizing data recorded in the Veterinary Medical Database (VMDB) 

(Fleming, Creevy et al., 2011). The cases were organized in two categories, 

pathophysiologic processes (PP) and organ systems (OS).  For German Shepherds, 

gastrointestinal causes (OS) contributed to death most frequently.  The most frequent 

PP cause of death for German Shepherd Dogs was found to be cancer.  The Belgian 

Malinois was not investigated in that study.  Cancer is a common cause of death in the 

general canine population; this is not an isolated issue with working canines.  In 

previously published studies that have investigated the military working canine, 

neoplasia is in the top three causes of death or euthanasia (Dutton and Moore, 1987; 
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Moore, Burkman et al., 2001). These findings are comparable to the data reported in the 

current study.  The majority of the canines reported in the current study were German 

Shepherd Dogs and overall the leading reported cause of death or euthanasia while in 

service was cancer.  Although cancer appears to be a commonly reported cause of 

death in canines, there is no definitive way to protect them from developing it unless 

research can show that there are specific risk factors inherent in the use to which these 

specialized canines are exposed (e.g., exposure to environmental carcinogens). 

Gastric dilatation-volvulus (GDV) is a disease where fluid or gas creates a gross 

distension of the stomach, rotation of the stomach, failure to empty, increased gastric 

pressure and shock.  Mortality rates that can be expected, despite medical care, to 

range from 15-24% (Brockman, Washabau et al., 1995; Glickman, Lantz et al., 1998). 

Several retrospective studies have investigated cause of death in military working dogs 

and the frequency of GDV (Dutton and Moore, 1987; Jennings and Butzin, 1992; Moore, 

Burkman et al., 2001). Two of these studies evaluated cause of death that occurred 

during the 1980’s (Dutton and Moore, 1987; Jennings and Butzin, 1992). Both studies 

found the occurrence of GDV to be below 5% in the military working dog population.  A 

more recently published study found an increased risk of GDV in the military working 

canine in the 1990’s.  Moore et al. found that 9.1% of deaths could be attributed to GDV 

or its complications (Moore, Burkman et al., 2001).   In the current study all reported 

causes of death categorized as bloat, torsion, or volvulus were grouped together as 

gastric dilatation-volvulus as a way to normalize the self-reported data. There were 66 

cases (12.0%) of death reportedly caused by GDV or its complications.  Although 12% 

is higher than what was reported in previously published studies, these findings are 
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comparable to what was reported by Moore et al. (Moore, Burkman et al., 2001). Gastric 

dilatation-volvulus is a potentially preventable and surgically correctable condition. 

Continued research and gathering of working canine casualty data may ideally lead to 

changes in management and prevention that may help lower the risk of GDV in both the 

law enforcement canine population, and in the general pet population.  

All cases that were reported as “natural causes” were placed in the non-specific 

category since the exact cause of death was not known.  Death by a natural cause 

could potentially be any illness not directly influenced by external forces. Senility or old 

age is typically thought of if the cause of death is listed as natural causes for a canine.  

Additionally, natural causes could be used to describe a geriatric canine that died from 

unknown causes with no specific sign of disease or trauma.  One limitation of the 

current study is that causes of death compiled were self-reported and verification or 

clarification was unattainable.  There could be variations in the way individuals define 

the term “natural causes” leading to artificially lower totals in other non-traumatic 

categories.  All causes of death that were compiled for the current study were recorded 

precisely as they were reported to CPWDA and ODMP.  

Previously published studies that have reviewed the cause of death or 

euthanasia in military working canines have reported senility or geriatrics in the top five 

most common causes of loss (Dutton and Moore, 1987; Moore, Burkman et al., 2001). 

The primary reason for euthanasia in one study was due to locomotion problems, 

affecting the musculoskeletal system, which inhibited their ability to perform tasks 

(Dutton and Moore, 1987). The average age of these canines were reportedly 10.5 and 

11.3 years (Dutton and Moore, 1987; Moore, Burkman et al., 2001).  Geriatrics could be 
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attributed to a marked decrease in performance or quality of life resulting in discharge 

and was found to be the third top cause of discharge for military working canines over 

the age of 5 (Evans, Herbold et al., 2007).  Although the current study has its limitations 

by only evaluating the causes of death for law enforcement canines still in service, the 

results are comparable to what has previously been published.  A database following 

the veterinary care and eventual cause of death of law enforcement canines through 

retirement would provide a complete representation of this unique population.  

Working canines are exposed to different circumstances when compared to the 

general population of canines.  Military and police canines are subjected to threats 

similar to those experienced by their human counterparts.  Potential threats include 

ballistic, blunt, and explosive resulting traumas in addition to the potential for ingesting 

hazardous substances.  These canines may be at a higher risk of hostile action or being 

involved in dangerous situations as a result of their duties. In this study, the most 

commonly reported cause of traumatic death to the CPWDA and ODMP for working 

canines was due to injuries caused by motor vehicle accidents (MVA).  Studies that 

have investigated causes of trauma in canines have found that motor vehicle accidents 

were frequent causes of trauma and fatalities (Kolata, Kraut et al., 1974; Kolata and 

Johnston, 1975; Simpson, Syring et al., 2009).  Kolata and Johnston published an 

article investigating injuries in 600 dogs involved in MVAs, where the dog was struck by 

a vehicle (Kolata and Johnston, 1975). Overall, 12.5% of the dogs died or were 

euthanized as a result of their injuries.  A more recent study reported 91.1% of the 

canine blunt trauma cases investigated were as a result of a motor vehicle accident 
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(Simpson, Syring et al., 2009). The mortality rate associated with severe blunt trauma 

related to MVAs was determined to be 12%.   

Working canines could be at an increased risk of injury and even death caused 

by MVA since their job requires apprehending and tracking of suspects. This could 

make the dogs more vulnerable than the normal canine population.  In situations where 

a suspect attempts to evade capture, the canine will pursuit the suspect which could 

involving running through urban and suburban areas with moderate to high traffic levels.  

Although the mortality rate reported in previously published studies was rather low for 

MVAs, this was the most common cause of traumatic death reported in the current 

study (Kolata and Johnston, 1975; Simpson, Syring et al., 2009).   

The second most commonly reported traumatic cause of death or euthanasia for 

in service canines was heatstroke.  Heatstroke in working canines may be instigated by 

many factors, none of which are well-documented in the scientific literature.  However, it 

is generally accepted that lack of acclimation to hot environments or hard work, sudden 

changes in environmental temperature or workload, and confinement in hot vehicles all 

play major roles in fatal heatstroke in working dogs (Taylor, 2009). Further detailed 

information was found for the majority of the cases through various online news reports.  

The majority of the heatstroke cases in the current study (n = 48, 60.8%) could be 

classified as confinement heat injury.  This means the canine was left unattended in a 

patrol car causing the canine’s body temperature to increase resulting in their death.  

With canine units, it is rather common in many situations to leave the canine in the 

patrol car while the engine and the air conditioning are running.  There are times where 

the car will be more comfortable and cooler than the ambient temperature and it tends 
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to be a good place for the canine to cool down and rest.  Alarm systems are available 

that will sound the horn, call, page, or otherwise alert the officer, and roll down the 

windows if the interior temperature of the car exceeds a certain threshold.  This alerts 

officers and allows additional air circulation in the car.  However, these systems can 

malfunction.  Out of the 79 heatstroke cases, 29.1% (n = 23) were reportedly caused by 

alarm systems that malfunctioned and did not alert the officers that the interior of the car 

reached dangerous temperatures.   

The other causes of confinement heat injury could be attributed to the handler 

becoming distracted or delayed.  Twenty-five cases (31.6%, n = 25) included police 

officers that forgot to remove the canine from the car for an extended period of time. 

Only 20.3% (n = 16) of the cases were caused by exertion (n = 8) or environmental 

conditions (n = 8).  The remaining cases could not be attributed to a cause since details 

were not available (n = 15, 19%).  Confinement heat injury is a cause of death that is 

preventable.  With further research and identifying the potential factors involved, this 

may help identify specific risk factors and thus more specific means to mitigate them.  

The third most commonly reported cause of traumatic death to the CPWDA and 

ODMP for working canines was as a result of the penetrating ballistic trauma of a 

gunshot wound (GSW).  Very few studies have looked at the occurrence of ballistic 

trauma in working canines.  A recently published study by Baker et al. investigated 29 

cases of GSW injury in military working dogs between 2003 and 2009 and reported a 

survival rate of 38% (Baker, Havas et al., 2013).  According to this study, the most 

common site for injury appeared to be the thorax and extremities. Fifty-nine percent 

(59%) of the canines were categorized as killed in action (KIA). Although, extremity 
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wounds were found to be the second most common injury location, all of the dogs that 

had extremity wounds as their only injury survived.  All dogs that received wounds to the 

neck or abdomen died as a result of the injuries.  In the cases with abdominal wounds, 

all of the dogs had additional life threatening injuries; however, it was determined that 

the cause of death was not the abdominal wound.  In a combat scenario, extremity 

wounds in humans can cause significant blood loss and was found to be one of the 

leading causes of death, however, in canines this does not appear to be the case, 

perhaps due to scant muscle in the extremity of a canine compared to a human (Baker, 

Havas et al., 2013).  

In 2012, the second leading cause of death in on-duty police officers was as a 

result of firearms (NLEOMF, 2012). According to the data collected by the National Law 

Enforcement Memorial Fund (NLEOMF), of the police officers that were killed, 38.6% 

were killed with a firearm. Although, to the author’s knowledge there currently are no 

studies listing the frequency of gunshot wounds in working canines, the current study is 

comparable to the data available for human law enforcement personnel. These canines 

are exposed to the same risks and are sometimes sent into situations ahead of the 

police officers to locate and alert their team of hazards in order to add protection to the 

officers. In this study 23% (n = 77) of the canines were reportedly killed or euthanized 

as a result of a gunshot wounds which is slightly lower than that reported for their 

human counterparts in 2012.      

Ballistic cases in this study were further investigated with additional online 

sources since the majority of the incidents were well documented by the media.  

According to various online reports, 38.4% (n = 28) of the penetrating ballistic trauma 
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cases were on-duty hostile shootings (Table 3.3). The remaining cases involved friendly 

fire (31.5%, n = 23) and hostile shooting that occurred off-duty (30.1%, n = 22).  The 

friendly fire cases can be further broken down into accidental or intentional shootings. 

Remarkable, 69.6% (n = 16) of the friendly fire cases were intentional shootings.  In 

these cases, the canine aggressed or bit a law enforcement officer and in response, the 

officer intentionally shot the canine out of fear for their own safety. Six cases (26.1%, n 

= 6) involved a canine that was caught in the crossfire or was accidentally shot by a 

police officer. One case resulted from a friendly fire but the exact circumstance was not 

clear. Cases that were categorized as hostile shootings that occurred off-duty generally 

involved a canine that escaped the kennel or home of the handler and was shot for a 

variety of reasons.   

The implementation of civilian trauma systems or injury databases have been 

effective at improving care delivered to injured patients, injury prevention, supplying 

data for clinical research, documenting effects of trauma, and policy development 

(Mann and Mullins, 1999; Olson, Arthur et al., 2001; Zehtabchi, Nishijima et al., 2011).  

In the past, significant improvements in civilian trauma care have resulted from data and 

experiences in combat casualty care.  On the contrary, applying civilian standards to 

military trauma care proved to expose significant medical differences in the 1990’s, 

therefore, exposing deficiencies on the battlefield (Mabry, Holcomb et al., 2000; 

Eastridge, Costanzo et al., 2009). Trauma registries not only help improve trauma 

outcomes but also improve advances in personal protective equipment and pre-hospital 

care standards (Eastridge, Costanzo et al., 2009; Kotwal, Montgomery et al., 2011). 
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 A study that investigated US Army Ranger combat casualties in Somalia noted 

the need for a comprehensive combat casualty registry allowing evidence based 

validation of surgical and resuscitative intervention (Mabry, Holcomb et al., 2000).  The 

Joint Theater Trauma Registry (JTTR) was developed to better organize and coordinate 

battlefield care.  One study analyzed the JTTR data from July 2003 through July 2008 

comparing data to the civilian trauma system equivalent, National Trauma Data Bank 

(NTDB) (Eastridge, Costanzo et al., 2009).  As a result the evidence based guidelines 

put in place for a military setting were associated with improvements in outcome for 

hypothermia prevention and management, burn resuscitation, and massive transfusion 

mortality. Following the inception of the JTTR, an additional study investigated the 

outcomes from implementing pre-hospital trauma care guidelines customized for the 

battlefield (Tactical Combat Casualty Care, TCCC) and a pre-hospital trauma registry 

(PHTR) (Kotwal, Montgomery et al., 2011). Comparisons were additionally made with 

casualty data from the regiment which supported and applied the guidelines to the 

military as a whole.  It was reported that the 75th Ranger Regiment had a decrease in 

cases identified as killed in action (KIA) and died of wounds (DOW) when compared the 

US military ground troops. Continually improving and implementing guidelines for 

battlefield trauma care will continue to lower casualty rates.  A comprehensive working 

canine database could be used in a similar manner to potentially lower fatality rates as 

demonstrated by the human population. 

The current study compiled and compared causes of death for in-service working 

canines in law enforcement.  However, there are limitations to this study.  The data 

presented in the current study were compiled from online sources.  The information 
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were collected and reported as a memorial to the fallen canines.  The causes of death 

are reported by handlers or other contributors affected by the death of the canine.  None 

of the cases could be verified with veterinary records, however, additional information 

could be found if there was media coverage of the incident. There are no specifications 

as to where the canine units must seek veterinary care making it difficult to access 

veterinary records and verify causes of death.  If veterinary records were available 

additional information such as breed, sex, age, and cause of death could also be 

compiled and analyzed.   

With the causes being reported by non-clinical personnel, it is possible the 

causes were not correctly understood or reported.  Errors in reporting the cause 

correctly, and potentials for certain types of causes not to be reported at all, could cause 

inaccurately represented categories.  Additionally, in an effort to compile the 

information, causes of death were grouped together in an attempt to normalize the data.  

For instance, there were cases in which the cause of death was listed as “heart attack.”  

In general, the myocardial infarction that is generally referred to in this terminology does 

not have the same catastrophic effects in the canine as it can in humans, quite possibly 

because of the differences in the two species’ cardiac collateral circulation (Weirich, 

Bisgard et al., 1971; Fregin, Luginbuhl et al., 1972; Liu, Tilley et al., 1986; Driehuys, Van 

Winkle et al., 1998).  Additionally, such a cause of death would be difficult to definitively 

diagnose in the absence of a full necropsy.  Therefore, these cases were grouped with 

“cardiac disease” and “cardiac failure.”  Furthermore, if the cause of death would carry 

additional scrutiny of the officer, when the death could be attributed to the officer’s 

actions or attention to care of the canine, then the handler may not contact the 



41 
  

       
 

websites. If the handler is unaware of the websites existence, there is a potential for 

missing data points as well.   

In conclusion, the current study casts some light on the risks that civilian law 

enforcement canines undergo as part of the tasks to which they are assigned; in 

addition to those risks to which they are subject simply due to their particular breed 

characteristics.  The databases from which these conclusions are drawn were never 

designed to yield high-quality epidemiologic conclusions: these databases are in 

general set up as memorials to animals with whom their handlers have worked closely, 

and to whom many handlers may owe their lives.  They are, at best, incomplete death 

records.  However, given the immense expense incurred by Local, State, and Federal 

governments in acquiring, training, and maintaining these highly-skilled animals, it 

would seem advisable to recommend the establishment of a wider database, taken 

across governmental levels and including living (working and retired) as well as 

deceased animals, in order to determine, more rigorously than is currently possible, the 

full extent of the risk profile to which these animals are subjected.  As more subtle 

epidemiologic patterns become more clear, it may be thus possible to alter selection, 

training, and deployment strategies in order to more efficiently maintain this valuable 

resource. 
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CHAPTER 4 – BIOMECHANICAL RESPONSE OF THE CANINE THORACIC CAVITY 

TO BLUNT BALLISTIC IMPACTS 

4.1 Introduction  

In the United States from 2004 to 2013, there were a reported 511 police officers 

feloniously killed in the line of duty and of those deaths, 92.8% (n = 474) were killed with 

a firearm (FBI-LEOKA).  Only 65% (n = 308) of these officers were wearing ballistic 

protective armor.  Of the officers that were wearing armor, only 5.8% (n = 18) were shot 

in areas that were covered by the ballistic vest and died as a result of the injuries 

sustained.  It has been reported that an officer not wearing armor is 3.4 times more 

likely to be killed from a shot to the thorax (LaTourrette, 2010). In addition to saving 

lives, armor has also been shown to reduce the severity of injury (Peleg, Rivkind et al., 

2006).  Although these findings have been established for humans, armor efficacy has 

not been explored for canines even though canine specific armor is commercially 

available.  

The impact and injury response is a complex interaction of soft and hard tissue 

responding to contact from an external source.  The importance of compression and 

speed of deformation have been reported for high velocity thoracic impacts (Viano and 

Lau, 1988; Viano, King et al., 1989). Additionally, the response of the human thoracic 

cavity to blunt ballistic impact has been documented (Bir and Viano, 2004; Bir, Viano et 

al., 2004; Bass, Salzar et al., 2006; Roberts, Ward et al., 2007). With the differences in 

anatomical structures and general differences between humans and canines, there will 

likely be a difference in terms of mechanism and severity of injury for a similar impact 

condition.  The human thorax is much wider than it is deep, while the opposite is true for 
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canines. In order to better protect, mitigate life-threatening injuries, and develop canine 

specific standards, the mechanisms of injury must first be understood. 

The aim of this study was to evaluate the mechanism of thoracic injury of a 

canine during blunt ballistic impact. This was achieved by quantifying the response at 

two impact conditions and determining the response at which the rib bones failed to 

recover. Impact force, thoracic deflection, spine/sternum/rib acceleration, and rib strain 

were collected for each specimen.  Necropsies were performed following the impact 

events to verify injury severity.  

4.2 Methodology and Materials 

4.2.1 Ballistic Armor  

Typically, armor is chosen based on the threat that is expected. Since injury and 

mortality data are not available for working canines, especially in law enforcement, 

understanding the most common threat to their human counterparts will start the effort 

to better understanding how to protect the canine. According to the Law Enforcement 

Officers Killed and Assaulted (LEOKA) database, the majority of officers killed in the line 

of duty from 2004 – 2013, were killed with a firearm (92.8%, n = 474) (FBI-LEOKA). 

Handguns were reported as the most common firearm used (72.8%, n = 345); the 9 mm 

handgun (26.7%, n = 92) was the most frequently reported weapon used in felonious 

killings of law enforcement officers. In order to protect against the most common threat 

to law enforcement officers, a NIJ Level II armor (designed and tested to 9 mm and .357 

magnum threats) was chosen as the focus and guideline for this study.  

Sheets of Kevlar® XP™ S102 (Figure 4.1) were donated to Wayne State 

University by DuPont Protection Technologies (Richmond, VA, DuPont™).  Ballistic 
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approval was granted by Wayne State University’s Institutional Animal Care and Use 

Committee (IACUC) (Appendix A). Detailed measurements were taken of each 

specimen including thoracic circumference, lateral depth of thorax, and dorsal-ventral 

length (spine to sternum). Lateral depth was a measurement taken at the site of impact. 

The thoracic ratio was used to further describe the shape of the thoracic cavity (dorsal-

ventral length/lateral depth). Age and exact breed could not be verified.  The majority of 

the canines were a mixture of Rottweiler, German Shepherd Dog, and/or “Pit bull” 

breeds. Canines over 30 kilograms were selected when possible. 

Pre-test x-rays were taken to ensure there was no presence of skeletal fractures.  

If fractures or other issues were detected the canine was not tested.  Once the canines 

were x-rayed and weighed, the specimens were stored at 0ºF until testing. Specimens 

were allowed to return to room temperature for at least 18-24 hours prior to applying 

instrumentation.  Once sufficiently thawed the instrumentation process began, at least 

24 hours prior to testing.   

Table 4.1: 
Detailed description of post mortem canine specimens tested 

ID Gender Breed 
Weight 

(kg) 

Thorax 
Circumference 

(cm) 
Depth 
(cm) 

Thoracic 
Ratio 

2 F Rottweiler Mix 34.6 72.0 20.7 1.15 
3 M Pit bull Mix 31.3 67.0 21.3 1.06 
4 M Pit bull Mix 30.4 65.0 21.0 1.00 
5 M Rottweiler Mix 37.7 69.5 21.7 1.01 
6 F Shepherd Mix 25.2 63.0 19.8 1.11 
7 M German Shepherd 38.5 82.0 22.1 1.14 
8 M Shepherd Mix 25.2 62.0 17.8 1.17 
9 M Pit bull Mix 26.8 65.0 20.0 0.99 

10 M Pit/Shepherd Mix 26.8 64.0 17.1 1.23 
11 M Pit bull Mix 28.5 63.5 17.7 1.22 
12 F Pit bull Mix 28.8 71.0 21.3 1.02 
13 M Pit bull Mix 26.5 68.0 19.0 1.11 
14 M Akita 31.8 69.0 19.0 1.18 
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 Prior to processing, the chestband output was filtered. The chestband data were 

further analyzed using custom software, CrashStar V2.5 (Transportation Research 

Center Inc., East Liberty, OH). This software has never been used with a canine model.  

Since the chestband can be installed at any point along the circumference of the chest, 

the program requires the user to input a “sternum” or “spine” location from the band 

placement on the specimen.  For the current study, the “spine” location was identified 

based on the initial position of the chestband on the specimen. This orientation allows 

the chestband to plot the thoracic motion and deformation resulting from the lateral 

impact at each time point.  

 The program output is the x- and y-axis position (mm) of each of the active gages 

for each point in time. The deflection of the thorax was calculated using a half-chest 

method (Maltese, Eppinger et al., 2002; Kuppa, Eppinger et al., 2003).  For this method 

the “spine” is known and the “sternum” location was identified as the gage diametrically 

opposite the spine gage (Figure 4.13).  A line was constructed between the spine and 

the sternum. The perpendicular distance between the gages near the impact site and 

the spine-sternum line was calculated for each time point.  It was determined that the 

sternum does accelerate during impact creating movement with the sternum gage; 

therefore, the spine-sternum line is adjusted at each time point following the sternum 

gage movement. Half-chest compression was calculated using the initial magnitude 

from the gage generating peak deflection to the spine-sternum line.  The time to peak 

deflection (TD) was determined based on the point of contact as established by the force 

sensor.  Rate at which the thoracic cavity reached peak deflection (VD) was calculated 

by dividing the peak deflection by the time to peak deflection (TD).   
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resultant rib accelerations, sternum and spine peak resultant accelerations, peak 

deflection, and peak shear strain. The Two-Way ANOVA was used to measure the 

interaction between armor packets (8-ply, 15-ply) or injury outcome (fracture, not 

fracture) and independent variables on measured engineering variables. The 

independent variables were defined as: weight, thoracic circumference, lateral depth, 

dorsal-ventral length, and thoracic ratio. If an interaction was present, a post-hoc One-

Way ANOVA test was used to compare the mean differences of grouped data. Due to 

the small sample size, a One-Way ANOVA was used to compare the mean differences 

between armor packet or injury outcome and rib strain. Independent variable 

interactions could not be evaluated for the rib strain data.  The significant level for these 

analyses was set at α = 0.05.    

Binomial logistic regressions were performed to determine whether the presence 

of a rib fracture could be predicted from the measured engineering variables (Table 

4.3). Independent variables (weight, thoracic circumference, lateral depth, dorsal-ventral 

length, and thoracic ratio) were added to the logistic regression model, in addition to the 

measured engineering variables, to determine if the independent variables aided in the 

models ability to predict a rib fracture.  All tests with no visible fracture were grouped 

into category “no fracture” or fracture = 0, all tests with a visible fracture (either fracture 

classification 2 or 3) were grouped in the category “fracture” or fracture = 1. 
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included.  Another model assessment tool, the Nagelkerke R2 value, evaluates the 

strength of the relationship between the injury outcome and the variables. This can be 

interpreted as the percentage of the variation of data explained by the model.  Models 

were then assessed for variable significance using the Wald Chi-squared statistic.  The 

null hypothesis tested was that the coefficient associated with the variable was zero or 

that there was no association between fracture and the variables (engineering variables 

and independent variables).   

4.3 Results 

Fourteen (14) canines were tested for this study.  The first three canines were 

evaluated to establish testing methodology and the appropriate number of armor layers 

to create an “injurious” and “non-injurious” response without complete perforation of the 

armor packets. The second test from Canine 2 and the second test from Canine 3 were 

included in the analysis since conditions were consistent with final methodology. The 

first test with Canine 6 (15-ply) was removed from the study due to a data acquisition 

system trigger failure during testing and therefore data were not collected.  Peak 

deflection illustrations for each test are located in Appendix C. Pictures of the impacted 

rib for each test are located in Appendix D. 

4.3.1 Biomechanical Data – Comparison based on Armor Packet 

Detailed descriptions of the biomechanical data collected during the tests are 

included in Tables 4.4 and 4.5.  The peak impact force for the 8-ply and 15-ply 

conditions were 3,090.2 ± 851.3 N and 2,786.7 ± 960.2 N, respectively.  The PMCS 

experienced peak force within 0.25 ms from contact.  
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A Spearman’s correlation was used to test the relationship between weight, 

circumference, lateral depth of thoracic cavity, dorsal-ventral length of thoracic cavity, 

and thoracic ratio.  Weight had a positive correlation with circumference (ρ = 0.781, P < 

0.001), dorsal-ventral length (ρ = 0.705, P < 0.001), and lateral depth (ρ = 0.671, P < 

0.001). The thoracic ratio did not prove to have correlation with weight.  Since 

circumference and dorsal-ventral length were well correlated with weight they were not 

explored further. The weight, thoracic ratio, and lateral depth were included in a Two-

Way ANOVA to determine if there was an interaction between armor packet and 

independent variables on measured engineering parameters.  Although a significant 

correlation was measured between lateral depth and weight, it was included in the 

analysis since the relationship was not as strong with a ρ value less than 0.7. For the 

Two-Way ANOVA, categorical variables were created for each independent variable 

(weight, thoracic ratio, and lateral depth) because of the small sample size, meaning the 

measured value was either ‘greater’ or ‘less’ than the median of the measurements. No 

interactions were present with lateral depth or thoracic ratio for any of the measured 

engineering variables.   

 Mean differences between armor packets (8-ply, 15-ply) and measured variables 

were also compared. The impacted rib experienced the highest acceleration responses 

with an average peak acceleration of 1,251.6 ± 343.5 g for 8-ply and 1,406.2 ± 596.0 g 

for 15-ply.  The eighth rib on the impacted side experienced peak accelerations of 

1,025.8 ± 655.4 g for 8-ply and 1,062.3 ± 929.2 g for 15-ply.  There was no statistical 

difference between the means for the seventh rib (P = 0.457) and the eighth rib (P = 

0.994) with regards to armor packet (Figure 4.14).  Impact location was typically closer 
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Table 4.6: 
Detailed list of peak principal (ε1 ,ε2) and peak shear (γmax) strains for seventh and eighth ribs   

ID Armor 
Seventh Rib Eighth Rib 

ε1 (μs) ε2 (μs) γmax (μs) ε1 (μs) ε2 (μs) γmax (μs) 
2R 8 - - - - - - 
3R 15 - - - - - - 
4L 15 - - - - - - 
4R 8 - - - - - - 
5L 15 2604.2 -6466.8 4525.0 - - - 
5R 8 4485.4 -9871.5 7178.5 1046.9 -1851.3 1429.8 
6L 8 4140.5 -9989.6 7065.0 3204.6 -5919.1 4552.3 
7L 8 4114.6 -8769.2 6372.6 366.6 -2364.2 1072.3 
7R 15 - - - - - - 
8L 15 - - - 7219.5 -1762.2 3403.7 
8R 8 - - - - - - 
9L 15 - - - - - - 
9R 8 5724.2 -11049.0 8059.2 6951.7 -4593.3 5770.2 
10L 15 - - - - - - 
10R 8 - - - 7131.4 -12120.0 9622.0 
11L 15 4143.6 -9196.9 6667.3 4152.6 -9231.1 6687.9 
11R 8 - - - 1802.1 -3284.0 2543.1 
12L 15 2850.8 -6022.3 4436.6 2226.5 -5258.7 3739.0 
12R 8 4899.0 -9521.4 7189.4 - - - 
13L 15 4702.8 -9245.1 6971.6 3226.8 -6861.3 5044.1 
13R 8 - - - 2275.6 -4213.4 2871.0 
14L 15 4466.1 -8499.9 6467.8 2549.7 -1714.8 1899.0 
14R 8 - - - - - - 
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 A Two-Way ANOVA was performed to measure the interaction between injury 

outcome (fracture, no fracture) and independent variables (weight, lateral depth, and 

thoracic ratio) on measured engineering variables. No fracture cases (classification 1) 

were compared to fracture cases (classifications 2 and 3) for measured engineering 

parameters. There were no significant interactions noted between the injury outcome 

and independent variables on measured engineering variables. Additionally there were 

no significant mean differences between the injury outcome and the average peak 

values of the measured parameters (Table 4.7). Although no statistical difference was 

noted, the resultant acceleration of the spine and peak deflection appear to be 

potentially promising varialbes for future studies. 

Table 4.7: 
Biomechanical data based on fracture classification  

 No Fracture (Class 1) Fracture (Classes 2, 3) P-value

ASp (g) 128.3 ± 84.9 210.1 ± 124.4 0.068

Deflection (mm) 10.9 ± 4.3 18.0 ± 11.6 0.078

VD (m/s) 4.0 ± 7.3 20.5 ± 27.2 0.102

Compression (%) 12.6 ± 4.3 19.2 ± 12.9  0.128

AR8 (g) 736.5 ± 303.0 1240.5 ± 929.9 0.170

TD (ms) 7.1 ± 4.3 4.8 ± 5.2 0.224

γmaxR7 (μs) 6142.5 ± 1298.9 7019.5 ± 780.8 0.265

γmaxR8 (μs) 5005.8 ± 1243.8 3576.4 ± 2844.8 0.368

AR7 (g) 1166.9 ± 375.3 1434.6 ± 532.2 0.375

ASt (g) 439.6 ± 306.7 479.6 ± 328.6 0.547

Force (N) 2966.5 ± 1120.7 2944.1 ± 783.3 0.959

*Abbreviated measurements: AR7-Resultant Acceleration rib 7, AR8-Resultant Acceleration rib 8, ASp-
Resultant Acceleration of spine, ASt-Resultant Acceleration of sternum, γmaxR7 -Shear strain rib 7, γmaxR8- 
Shear strain rib 8 
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4.3.3 Injury Prediction  

In addition to the measured responses, additional variables were calculated that 

may help predict the occurrence of injury (Table 4.8).  Logistic regression analysis was 

performed to determine whether the presence of rib fractures could be predicted from 

the measured and calculated engineering variables. Lateral depth and weight were 

included in the model as independent variables.  

Table 4.8: 
Test results evaluated for potential fracture prediction 

ID Armor 
Deflection 

(mm) 
TD (ms) VD (m/s) 

Compression 
(%) 

Fracture 
(Y/N) 

2R 8 23.2 0.95 24.3 20.4 Y 
3R 15 16.3 3.0 5.4 15.5 Y 
4L 15 11.0 9.1 1.2 12.8 N 
4R 8 12.2 11.6 1.1 11.9 Y 
5L 15 9.2 11.7 0.8 10.8 N 
5R 8 10.5 15.4 0.7 9.6 Y 
6L 8 12.5 14.9 0.8 13.2 N 
7L 8 17.7 0.9 19.1 18.7 Y 
7R 15 8.4 7.1 1.2 7.2 N 
8L 15 25.6 0.6 46.0 29.2 Y 
8R 8 11.8 3.2 3.7 14.1 Y 
9L 15 12.0 0.4 30.2 13.5 Y 
9R 8 7.7 8.3 0.9 8.1 Y 
10L 15 16.6 3.8 4.4 18.9 N 
10R 8 10.9 9.6 1.1 12.7 Y 
11L 15 6.8 3.7 1.9 9.1 N 
11R 8 7.2 11.2 0.6 7.5 Y 
12L 15 7.7 5.9 1.3 8.0 N 
12R 8 19.0 0.8 23.2 18.2 N 
13L 15 7.3 6.9 1.1 15.4 N 
13R 8 15.2 0.5 30.2 15.7 Y 
14L 15 31.4 1.3 23.7 40.6 Y 
14R 8 50.3 0.5 100.0 51.8 Y 



75 
  

       
 

 

P
red

icto
r 

α
 

β
 

S
E

 
M

o
d

el 
X

2 

M
o

d
el 

p
-

va
lu

e 
R

2 
-2L

L
 

W
ald

 
X

2 

W
ald

 
p

-
va

lu
e 

S
en

sitivity 
(%

) 
S

p
ecificity 
(%

) 

C
o

rrect 
P

red
ictio

n
 

(%
) 

V
D  

6.474 
0.100 

0.059 
7.390 

0.060 
0.372 

23.399 
2.843 

0.092 
78.6 

66.7 
73.9 

D
eflection 

5.449 
0.190 

0.124 
6.419 

0.093 
0.330 

24.370 
2.350 

0.125 
78.6 

66.7 
73.9 

A
S

p  
2.767 

0.012 
0.008 

6.177 
0.103 

0.319 
24.612 

2.514 
0.113 

78.6 
44.4 

65.2 

A
R

8  
2.857 

0.001 
0.001 

4.026 
0.259 

0.218 
26.763 

1.181 
0.277 

78.6 
44.4 

65.2 

A
R

7  
5.439 

0.002 
0.001 

3.730 
0.292 

0.221 
24.180 

1.402 
0.236 

84.6 
50.0 

71.4 

C
om

pression 
4.349 

0.111 
0.098 

4.496 
0.213 

0.241 
26.293 

1.278 
0.258 

78.6 
55.6 

69.6 

T
D  

6.868 
-0.098 

0.098 
3.325 

0.344 
0.182 

27.464 
1.012 

0.315 
78.6 

55.6 
69.6 

A
S

t  
8.840 

0.000 
0.002 

2.886 
0.409 

0.166 
26.881 

0.062 
0.804 

69.2 
55.6 

63.6 

F
orce 

6.768 
0.000 

0.001 
2.011 

0.570 
0.120 

26.830 
0.120 

0.741 
78.6 

25.0 
59.1 

T
ab

le 4.9: 
Lo gistic regression results 



76 
  

       
 

Logistic regression results indicate that the engineering variables do not affect 

the likelihood that a fracture will occur (Table 4.9). The velocity of deflection seemed to 

have the most encouraging results (model P = 0.060 and variable P = 0.092).  Weight 

and lateral depth of the specimens did help improve the models, however, they were not 

found to be significant factors in predicting rib fractures (P > 0.05). Thoracic ratio was 

initially explored as an additional independent variable but did not improve the model so 

it was removed from the analysis.  

4.4 Discussion 

 Biomechanical assessments and establishing a response is the first step to 

understanding injury mechanisms and identifying methods for protection. These 

responses have been well established for automotive impacts, but blunt ballistic impacts 

are not the same kind of loading event.  Ballistic impacts involve lower mass and higher 

rate considerations making force and deflection evaluation difficult. Previously published 

biomechanical response studies involving blunt ballistic impacts have utilized larger, 

instrumented projectiles allowing for force determination (Bir and Viano, 2004; Bir, 

Viano et al., 2004; Eck, 2006; Wilhelm and Bir, 2007; Raymond, Van Ee et al., 2009).  

Additionally, deflection is generally determined by high speed video and tracking 

markers. During this study, force and thoracic deflection were collected using the thin 

film force sensor and chestband, a novice approach for a blunt ballistic response study.   

 Force and deflection vary based on impact velocity and mass of the projectile 

and stiffness of the target.  In a previously published blunt ballistic thoracic study, there 

were three conditions evaluated: A) high mass with low velocity (140 g at 20 m/s), B) 

high mass with moderate velocity (140 g at 40 m/s), and C) low mass with high velocity 
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(30 g at 60 m/s) (Bir, Viano et al., 2004).  Average peak force and peak deflection 

measurements that resulted from Condition A were 3,383 ± 761 N and 22.6 ± 2.8 mm, 

respectively.  For Condition B, the average peak force was 10,620 ± 2,226 N and the 

average peak deflection was 52.3 ± 16.2 mm. Impact Condition C resulted in an 

average peak force of 3,158 ± 309 N and an average peak deflection of 17.8 ± 4.7 mm. 

The impact conditions for the current study differ by several orders of magnitude, using 

live ammunition with a bullet weight of 124 grains (8.04 g) and an average impact 

velocity of 394.0 ± 7.3 m/s. The resulting average peak behind armor force for the 8-ply 

armor condition was 3,090.2 ± 851.3 N creating an average peak thoracic deflection of 

16.5 ± 11.6 mm. The resulting average peak behind armor force for the 15-ply armor 

condition was 2,786.7 ± 960.2 N with an average peak deflection of 13.8 ± 8.1 mm. 

Although, the peak forces recorded during the current study are comparable to 

Conditions A and C from Bir et al., the peak deflections are lower.  This could be due to 

the location of deflection measurement for the current study or the difference between 

the animal and human model. Since the chestband was delicate, it could not be placed 

at the location of impact.  If the impacts were more localized there is a chance that the 

true peak deflection was not captured.   

 An impact to the thoracic cavity compresses the rib cage, accelerating the ribs in 

the direction of the impact force (Viano, King et al., 1989). With sufficient compression 

of the thorax, tensile strain limits in the ribs can be exceeded generating fracture.  As 

the thoracic cavity is compresses, the internal organs can become displaced from their 

normal positions, increasing pressure, and potentially creating damage to the organs 

within the thoracic cavity.  Thoracic deflection, compression, and TTI (acceleration 
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based criterion) have been identified as potential injury predictors for automotive 

thoracic impact conditions (Cavanaugh, Zhu et al., 1993; Kuppa and Eppinger, 1998; 

Chung, Cavanaugh et al., 1999; Kuppa, Eppinger et al., 2003).  For example, an 

average peak rib deflection of 65 mm or 20% chest compression correlates to a 50% 

probability of an AIS 3+ injury in a 45 year old 50th percentile male (Kuppa, Eppinger et 

al., 2003). Peak deflections and compressions reported in this study were much lower 

than those reported in automotive literature.  The current study found that there was an 

average peak deflection of 18.0 ± 11.6 mm for tests that resulted in a rib fracture and a 

compression of 19.2 ± 12.9% (based on half-chest methods). The duration of the impact 

is the main difference between ballistic and automotive impacts and the occurrence of 

injury. Peak thoracic forces generated during automotive impact research are 

approximately 4 to 6kN resulting in average peak deflections of 68.4 ± 16.1 mm and an 

impact duration of approximately 60 ms (Yoganandan, Humm et al., 2013). The average 

peak force of 2,944.1 ± 783.3 N for tests resulting in fracture was obtained in less than 

0.5 ms for the current study.   

 For high velocity type impacts, both velocity and compression are evaluated by 

the Viscous Criterion (VC) which was developed for thoracic and abdominal impacts to 

include the rate-sensitive response of tissue (Viano and Lau, 1988).  This criterion 

indicates that as the speed of deformation increases the body’s tolerance to 

compression decreases.  The VC demonstrated high correlation to severe soft tissue 

and internal organ injury (Viano and Lau, 1988). A tolerance level of VCmax = 1.0 m/s 

correlated to a 25% probability of injury for frontal chest impacts. Bir and Viano 

evaluated injury criteria for blunt ballistic impacts (Bir and Viano, 2004). The Blunt 
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Criterion (BC), taking into account five parameters (specific to the physical properties of 

the impactor and impacted surrogate), and VC were evaluated. Both variables were 

significant predictors of skeletal injury.  A VCmax of 0.8 m/s was determined to result in a 

50% probability of sustaining an AIS 2 or 3 skeletal injury.  For the current study, 

thoracic wall thickness was not recorded and therefore BC was not calculated.  The rate 

of deflection, VC, and VCmax were explored. The velocity of deflection calculated by 

differentiating the chestband deflection exceeded the 30 m/s suggested for VC validity 

(Viano and Lau, 1988).  This is potentially a result of filtering since the chestband output 

was filtered with a frequency limit of 3,000 Hz which is higher than what is typically used 

for a CFC 600 (Maltese, Eppinger et al., 2002; Yoganandan, Pintar et al., 2008; 

Yoganandan, Humm et al., 2013). Additionally, VC was established to identify the risk to 

soft tissue and internal organs.  The current study evaluated thoracic injury in terms of 

skeletal damage.  As an alternative to the traditional VC calculation, the time to peak 

deflection (TD) and the rate at which peak deflection was achieved (VD) were reported. 

The time to peak deflection was evaluated and the average time to the peak was 7.1 ± 

4.3 ms for tests resulting in no fracture and 4.8 ± 5.2 ms for tests resulting in a fracture. 

The rate at which the peak deflection was reached could also be calculated and it was 

found that the tests resulting in no rib fracture reached the peak deflection at 4.0 ± 7.3 

m/s while the tests that result in a fracture reached the peak at 20.5 ± 26.2 m/s. This 

estimate did prove to be the most promising measurement when predicting rib fracture 

for this study and could be looked into further in future studies. 

 Rib fracture patterns are commonly complex with a relatively small amount of 

published research (Love and Symes, 2004; Daegling, Warren et al., 2008; Christensen 
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and Smith, 2013). Bone tends to be stronger under compression rather than tension, 

meaning bone will typically fail first at the point of greatest tension (Alms, 1961).  During 

the current testing the lateral (exterior) aspect of the rib bone was under compression 

and the medial (internal) aspect was under tension creating a bending force leading to 

fractures propagating primarily on the medial aspect of the rib bone.  Love and Symes 

reported multiple examples of rib fractures in which there was evidence of buckling 

fractures, which were defined as failure that initiated at the point of compression (Love 

and Symes, 2004). Buckling fractures were not noted in the current study.  Fourteen of 

the 23 cases (60.9%) resulted in a fracture where the fracture propagation began on the 

medial side of the rib bone. Nine cases (39.1%) resulted in incomplete fractures with 

four fractures having incomplete butterfly fractures as well (Figure 4.24). Five cases 

(21.7%) resulted in complete fracture of the rib bone with two cases resulting in a 

complete butterfly fracture (medial aspect of bone) and one case resulting in 

comminution of the rib bone. A butterfly fracture represents failure in bending that 

originates in tension and as the original compressed surface is encountered, the 

fracture surface splits, shearing off the bone fragment (Alms, 1961; Christensen and 

Smith, 2013).  Age of the canines may have played a role in the resulting fracture 

patterns; however, age could not be determined from the specimens.  Although soft 

tissue was not assessed during the current study, rib fractures can be an important 

indicator of soft tissue and organ injury.  Future testing should evaluate the effects of 

blunt ballistic trauma on soft tissue.   
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made from the level of the eighth and ninth ribs which did not result in injury.  Another 

observation that was made regarding the chesband was sensitivity to suture site.  If the 

suture was right at the level of impact a large peak was noticed in the deflection shortly 

after contact. The skin may have been pulled resulting in a sharp response of the strain 

gage at the suture.  This perhaps is not representative of thoracic movement but 

primarily epidermis movement. Additionally, if there were no sutures near the impact 

site the deflection seemed to indicate the chestband bulged after impact creating a 

negative deflection or expansion of the cavity.  Previous literature did not go into detail 

regarding methods for securing the chestband, perhaps for higher rate impacts suture 

placement should be taken into account.  With that being said, the chestband allowed 

the ability to collect deflection data without extensive damage to tissue since video 

tracking was not a viable option with live ammunition and utilization of both side of the 

canine. Although, the peak deflection data did show promise in the logistic regression 

analysis, ballistic impacts may not be an appropriate use for the chestband. 

 Another interesting observation from the chestband was the peak deflections 

occurrence with respect to time.  Generally, the thoracic wall at the point of impact 

accelerates to a peak velocity, which then decreases to zero at which point the peak 

deflection occurs.  For this study, peak deflection did not always occur at that point in 

time. Deflections from Specimens 4, 5, and 6 experienced peak deflections 

approximately 10 ms after contact.  Specimens 4 and 5 were above the median weight 

but Specimen 6 was one of the smallest canines tested.  Each specimen was a different 

breed of canine but Specimens 4 and 5 were more barreled chested compared to 

Specimen 6 which was a German Shepherd Mix. Unfortunately it is not clear what may 
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have caused the delay in peak deflection for these three canines.  It is hypothesized 

that the issue may be related to the location of the chestband sutures.  Or perhaps the 

external compression from the harness was greater than the deflection created from the 

impact, resulting in the peak deflection being created from an unrelated action. 

 The sample size of the current testing was small.  When analyzing the mean 

differences between injury outcome and the engineering variables significant 

differences were not observed.  Spinal acceleration and deflection, although not 

statistically significant, were close to significance and could be focused on in future 

studies. A power analysis indicated an approximate sample size of 90 in which to obtain 

significance based on the data collected during the current study.   

 Additionally, the order of testing typically started with the 15-ply packet and then 

the 8-ply packet.  This order was decided on to help reduce the likelihood that there 

would be rib fracture resulting from the first impact.  If a rib fracture was produced 

during the first impact, the rib cage would not be intact for the second impact and could 

compromise the results.  There were three canines that were tested where both impacts 

resulted in a rib fracture (Canine ID: 8, 9, and 14).  For each of these tests, the first 

impact with the 15-ply packet resulted in a level 2 fracture (incomplete) and the second 

impact with the 8-ply packet resulted in a level 3 fracture (complete).  The data from 

these tests were further examined and there were no noted variations within these tests. 

 The current study generated preliminary results regarding the thoracic blunt 

ballistic response of a canine. A variety of techniques were evaluated for collecting 

biomechanical response data for behind armor blunt trauma impacts with live 

ammunition.  Although the chest deflection measurement method had its limitations, the 
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rate for reaching peak deflection proved to be a variable that should be evaluated 

further.  Additionally, more layers of armor reduce the severity of injury based on the 

specimens tested in this study, even though there was no statistical difference in the 

thoracic responses.  
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CHAPTER 5 – EVALUATION OF THE USE OF NATIONAL INSTUTUTE OF JUSTICE 

(NIJ) 0101.06 BALLISTIC RESISTANCE OF BODY ARMOR 

5.1 Introduction 

 Initial body armor research began with a few objectives: develop armor that 

could stop the most common threats officers would face, prevent penetration and 

reduce life-threatening injuries, and allow the officer to physically walk away (Hanlon 

and Gillich, 2012). In order to work towards these objectives and evaluate behind armor 

blunt trauma (BABT), testing was conducted at Edgewood Arsenal in the late 1970’s 

(Montanarelli, Hawkins et al., 1973; Goldfarb, Ciurej et al., 1975).  Impacts with a .38 

Special, 244 m/s (800 fps), were performed on anesthetized goats covered with 7-ply 

Kevlar-29 material.  Impact locations varied to assess different vital organs and evaluate 

the injury response.   

In order to translate these data to determine the risk of BABT injury, a standard 

methodology for measuring backface signatures (BFS) needed to be developed.  BFS is 

defined as the maximum deformation of the soft body armor as a result of ballistic 

impact.  A number of materials were evaluated to create a repeatable, inexpensive, and 

easy to conduct testing method which would also respond similarly to human tissue 

(Metker, Prather et al., 1975; Prather, Swann et al., 1977).  After much consideration 

and testing of various materials, a standard methodology, and BFS limit were 

established.  The recommendation has been correlated to both the gelatin data and the 

goat model (Goldfarb, Ciurej et al., 1975; Metker, Prather et al., 1975).  It was 

determined that 44 mm of deformation into a ROMA Plastilina modeling clay, No. 1, 

backing material correlated to a 6% probability of lethality.  These reports concluded 
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that humans would be even less likely to sustain serious injuries under similar 

conditions. This BFS limit of 44 mm in clay is still used today to evaluate and certify 

armor. Currently in the U.S., soft body armor is assessed and certified using the NIJ 

0101.06 standard which evaluates a number of requirements in addition to BFS (NIJ-

0101.06, 2008).  

Although this standard was developed using an animal model and was designed 

to be species-independent, the standard was meant to represent a 70 kg man. 

Validation was not performed to determine the risk of injury for smaller individuals or 

smaller animals. It is possible that smaller individuals would be at greater risk of injury 

when exposed to the same impact conditions. Additionally, the testing represented one 

ballistic threat and one level of armor protection.  Currently there are three levels of soft 

armor protection (NIJ Level IIA, II, IIIA) available and certified, each tested to two 

different ballistic threats and velocities (NIJ-0101.06, 2008).  The .38 Special is no 

longer the most common threat that civilian law enforcement will encounter and is not 

included in the current standard.     

The goal of the current study was to evaluate the correlation between injuries 

recorded in PMCS testing to BFS measurements in clay. Two armor packet designs, 8-

ply and 15-ply, were tested on conditioned clay backing material. Depth and volume of 

indentation were recorded and compared to injury data from PMCS testing to determine 

if the BFS is a good predictor of injury in the canine.   
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5.2 Methodology and Materials 

5.2.1 Ballistic Armor  

Sheets of Kevlar® XP™ S102 were donated to Wayne State University by 

DuPont Protection Technologies (Richmond, VA, DuPont™).  Ballistic sheets of 30.5 x 

30.5 cm (12 x 12 in) were received with an areal density of 0.51 kg/m2 and thickness of 

0.46 mm for each sheet.  The sheets were cut to 15.2 x 30.5 cm (6 x 12 in) panels in 

order to be consistent with PMCS testing.  Layers of Kevlar® XP™ were placed 

together unidirectionally, tacked in the four corners, and placed inside a nylon cover.  

DuPont™ recommends, for a vest made with Kevlar® XP™, a NIJ level II would be 

designed with 9 layers of Kevlar® XP™ S102.  The same two conditions used in PMCS 

testing (8-ply and 15-ply armor packets) were tested during the current study.  

5.2.2 Experimental Design  

Prior to testing, a box with dimensions 61 x 61 x 14 cm (24.0 x 24.0 x 5.5 inch) 

filled with ROMA Plastilina clay No. 1 was placed in a temperature and humidity 

chamber (ESL-2CA, ESPEC North America Inc., Hudsonville MI) for conditioning.  The 

clay was heated to 42 ºC (107.6 ºF) with 0% relative humidity for at least 24 hours prior 

to testing.  The clay was calibrated as outlined in the NIJ 0101.06 standard to ensure it 

fell within acceptable testing ranges (NIJ-0101.06, 2008). Once the clay was determined 

to be with the calibration thresholds, the clay box was placed 5 meters down range from 

the muzzle of the barrel and the armor packet was secured to the front of the box 

(Figure 5.1).  Bullets were fired using a Universal Receiver (model UR-01, Rapid City, 

SD, H.S. Precision Inc.) which allowed for accurate, remote firing.  The shot path was 

aligned such that the bullet struck perpendicular to armor packet and at least 7.6 cm (3 
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probability of fracture were calculated if models and variables proved to be significant 

predictors (Kuppa and Eppinger, 1998).   

5.3 Results 

5.3.1 Clay and PMCS depth comparison  

One clay test was performed for each PMCS test (n = 23). Velocities were 

paired, as close as possible, to each PMCS test resulting in an average change of 

velocity of 1.5 ± 1.0 m/s.  Injury outcomes from each PMCS test were matched with 

BFS depths in clay and volumes of the clay indentations. The bullet was captured by the 

armor packet (8-ply and 15-ply) during both PMCS and clay testing with no complete 

penetrations noted.  The bullet penetrated the first three layers of armor and the fourth 

layer was mechanically damage. A comparison of PMCS testing data to depth and 

volume in clay can be found in Table 5.2 for 8-ply armor and Table 5.3 for 15-ply armor.  

The average BFS depth for the 8-ply tests was 41.2 ± 3.7 mm and the average volume 

of the indentation was 73.9 ± 8.3 mL.  The average BFS depth for the 15-ply armor 

packet was 24.1 ± 1.8 mm and the average volume of the indentation was 48.2 ± 5.4 

mL.  Both depth and volume of the indentation in the clay are significantly larger for the 

8-ply armor when compared to the indentation resulting from 15-ply (P < 0.001).  

Pictures of the impacted rib for each PMCS test are located in Appendix D. 
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Table 5.2: 
Clay and PMCS data paired for 8-ply tests 

ID 

PMCS Data Clay Data 
# of 

armor 
layers 

Velocity 
(m/s) 

Deflection 
(mm) 

Fracture 
Score 

Velocity 
(m/s) 

Depth 
(mm) 

Volume 
(mL) 

2R 8 411.5 23.2 2 413.6 43.7 88.0 

4R 8 396.8 12.2 2 394.4 39.5 77.7 

5R 8 385.3 10.5 2 383.7 36.1 73.2 

6L 8 395.0 12.5 1 394.4 36.9 66.9 

7L 8 387.7 17.7 2 387.4 43.5 68.4 

8R 8 398.1 11.8 3 399.6 45.7 62.7 

9R 8 402.9 7.7 3 400.2 45.5 77.8 

10R 8 405.4 10.9 3 407.8 38.4 88.2 

11R 8 387.1 7.2 2 387.1 41.7 73.7 

12R 8 385.6 19.0 1 387.1 41.7 73.7 

13R 8 382.5 15.2 3 383.7 36.1 73.2 

14R 8 397.8 50.3 3 399.6 45.7 62.7 

 

Table 5.3: 
Clay and PMCS data paired for 15-ply tests 

 PMCS Data Clay Data 

ID 
# of 

armor 
layers 

Velocity 
(m/s) 

Deflection 
(mm) 

Fracture 
Score 

Velocity 
(m/s) 

Depth 
(mm) 

Volume 
(mL) 

3R 15 393.5 16.3 2 394.4 24.4 43.9 
4L 15 387.1 11.0 1 384.7 26.9 50.0 
5L 15 394.7 9.2 1 394.7 24.2 46.1 
7R 15 399.6 8.4 1 403.3 23.1 53.5 
8L 15 391.7 25.6 2 392.3 21.2 41.6 
9L 15 396.5 12.0 2 395.9 26.1 58.5 
10L 15 401.7 16.6 1 404.5 25.8 53.1 
11L 15 392.9 6.8 1 392.3 21.2 41.6 
12L 15 381.9 7.7 1 384.7 23.9 48.7 
13L 15 394.1 7.3 1 395.3 24.5 49.1 
14L 15 394.1 31.4 2 394.4 24.4 43.9 
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5.4 Discussion  

The overall goal of injury biomechanics research is to understand the process of 

injury and develop ways to reduce or eliminate injury.  In order to achieve this, 

researchers must first identify the injury mechanism, quantify the responses of tissues 

and structures in the body to various impact conditions (‘biomechanical response’), and 

determine the response at which tissue and structures may fail (‘injury tolerance’). In 

order to minimize injury, protective materials or structures can be developed or 

evaluated to minimize the force and energy delivered to the body region.  For the most 

part, this has been accomplished for human body armor.  A Standard (NIJ 01011.06) 

has been developed and is currently followed for certifying protective armor; however, 

the standard was not evaluated for small individuals or animals (NIJ-0101.06, 2008).  

This study took the biomechanical results from PMCS testing and evaluated whether 

the current standard is effective at predicting injury for a canine-specific model.  

Fourteen fractures were produced from the 23 impacts in the PMCS.  Although 

this is just a single rib fracture that may not be life-threatening, some of the fractures 

were rather severe.  Five of the fractures were classified as discontinuous or displaced 

fractures. Three cases exhibited intercostal muscle damage where the rib and muscle 

had failed creating an opening in the thoracic cavity.  This study evaluated primarily 

skeletal injuries, but some of the impacts may have resulted in serious organ damage.  

Since the PMCS were frozen prior to testing, evaluating soft tissue damage was outside 

the scope of this study but could be evaluated in future studies.  Since there are few 

studies collecting data regarding ballistic injuries to canines, it is difficult to conclude 

what the recovery time would be for this type of injury in a canine.  Previously published 
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literature evaluating armor and its protective ability looked primarily at organ damage 

(Linden, Berlin et al., 1988; Roberts, O'Connor et al., 2005; Merkle, Ward et al., 2008).  

This agrees with the recommendation that with a higher velocity impact, internal organ 

injury occurs before peak compression of the thoracic cavity (Viano and Lau, 1988). 

This study represents a first step to evaluate canine thoracic injuries by focusing on 

skeletal injuries.  

The average peak deflection in the PMCS with the 8-ply armor was 16.5 ± 11.6 

mm while the BFS in clay with the same armor packet was 41.2 ± 3.7 mm.  The average 

peak deflection in the PMCS with the 15-ply armor packet was 13.8 ± 8.1 mm while the 

BFS in clay was 24.1 ± 1.8 mm.  It is evident that the clay does not reflect the deflection 

collected in the canine testing.  Clay has been shown to agree with human response in 

blunt ballistic impacts, however, the indentation in the clay and BFS represent the 

permanent deformation (Bir, 2000). Clay does not provide the complete biomechanical 

representation of the impact which should be considered. The location of deflection 

measurement during the PMCS testing could also explain potential differences in mean 

values. One trend that is comparable is the deflection and BFS decreases with the 

increased number of ballistic material layers.   

Logistic regression analysis show that based on the PMCS data and clay data 

the current standard, utilizing clay backing material to determine BFS, seems to predict 

the outcome of injury. The model was statistically significant with both BFS and volume 

of the indentation in clay. The volume measurement is not a requirement for armor 

certification based on the NIJ 0101.06 Standard but it is an additional parameter that 

helps identify the overall physical size of the indentation.  Ballistic resistant armor is 
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designed to distribute energy over a large area to reduce the severity of injury in the 

tissue.  As armor has become more flexible the distribution of energy can be more 

localized creating more severe injuries in the underlying tissue.  Soft armor can “pencil” 

when impacted, creating a deeper but very narrow indentation in clay and tissue (Carroll 

and Soderstrom, 1978; Wilhelm and Bir, 2007). The volume measurement may also 

help identify this occurrence.  

The logistic regression model indicated that a BFS depth of 28.5 mm 

corresponds to a 50% probability of rib fracture.  The current standard follows the 

threshold of a 44 mm BFS limit. This limit provided a 6% probability of lethality in  a goat 

model of approximately 70 kg (Goldfarb, Ciurej et al., 1975; Metker, Prather et al., 

1975).  This may indicate that a lower BFS limit is needed when certifying canine 

specific armor.  The sample size used for the logistic regression model (n = 23) is 

relatively small which should be considered when interpreting the results.  

  Ballistic armor has proven effective for human law enforcement and military 

personnel and could be beneficial to their canine counterparts.  Understanding the 

response of the canine and the injury tolerance with regards to skeletal fracture can 

help improve the future development of canine armor.  Further refining the minimum 

number of armor layers needed to prevent serious injury and allow for canine mobility to 

complete tasks is needed to optimize canine protection and efficacy in the field.   
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CHAPTER 6 – END USER EVALUATION 

6.1 Introduction 

Law enforcement and military working canines are utilized in a variety of different 

environments, some involving extreme conditions. The environmental limits of the 

canines and how they perform tasks efficiently, without causing harm to themselves, 

have yet to be defined.  Military environments can be harsh and extreme, including 

large changes of altitude, utilization in naval operations, and desert or tropical 

temperature conditions (Baker and Miller, 2013). Comparatively, military working 

canines may experience more extremes; however, law enforcement canines do 

encounter potentially hazardous climates in certain areas of the United States and may 

also be utilized for water operations. At the same time that working dogs are being 

utilized more broadly, canine specific protective equipment is becoming more widely 

marketed. Paw protectors, muzzles, protective eyewear, tactical vests, and ballistic 

vests are all available for working canines.  Although available, information regarding 

the efficacy and effect on canine performance is minimal. For this study, canine core 

body temperature and performance were evaluated for law enforcement canine working 

dogs wearing ballistic vests. 

The normal body temperature of a canine ranges between 100.5 - 102.5 ºF at 

rest and 101.0 – 104.0 ºF during exercise (Taylor, 2009).  Most veterinary personnel 

follow the guideline that any rectal temperature over 106oF is a critical temperature 

indicating heat injury. However, these temperatures were derived from data collected in 

clinical settings after presentation to veterinary care, and significant cooling may have 

already occurred prior to presentation.  Thus, actual body temperature causing heat 
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injury may have been significantly higher (Taylor, 2009; Baker and Miller, 2013).  When 

investigating working or athletic canines, the body temperatures that can be tolerated 

may also differ from the normal population.  Several studies have investigated canine 

athletes and working canines and have shown that canines with rectal temperatures of 

108oF during moderate exercise demonstrate no adverse effects (Rose and Bloomberg, 

1989; Steiss, Ahmad et al., 2004; Angle and Gillette, 2011). 

The aforementioned studies collected canine body temperatures during exercise 

to evaluate risk of heat injury, however, the main focus of these studies were athletic 

canines. The aim of this study was to measure the effects of armor as it relates to core 

body temperature, focus, concentration, mobility, speed, and coordination.  These were 

evaluated by monitoring law enforcement canines while they completed a typical day of 

training with and without armor in a non-climate controlled outdoor facility. Core body 

temperature, video and duration of time to complete each task were recorded. The 

primary hypothesis was that the armor would both increase the task completion times 

and increase the canines’ core body temperature during the task.   

6.2 Methodology and Materials 

6.2.1 End User Recruitment 

Handlers and canines were recruited from the Macomb County Sheriff’s 

Department canine unit.  Prior to obtaining the recruits, approval was granted by Wayne 

State Universities Institutional Animal Care and Use Committee (IACUC) (Appendix A). 

Six handlers agreed to participate in the study with their canines; however, data were 

only collected from five.  The average weight of the five canine participants was 38.4 ± 
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4.3 kg (84.6 ± 9.4 lb) with service times ranging from 2.5 to 5 years.  All of the canines 

were male German Shepherd Dogs.   

  One week prior to collecting data, the vests were provided to the handlers. The 

handlers were asked to introduce the canine to the new vest during non-working hours, 

allowing the canine to wear the vest for about 30 minutes each day, for the week prior to 

testing. This acclimation period allowed the canine to become comfortable with the fit 

and feel of the vest. Although most of these canines had ballistic vests available to 

them, new vests were purchased to ensure consistency with vest manufacturer, design, 

and ballistic threat level.  The canines were inexperienced in completing the training 

course while wearing body armor vests.      

6.2.2 Canine Ballistic Armor 

   Prior to procuring vests it was important to determine the most common ballistic 

threat to law enforcement officers in the US and the most commonly purchased canine 

ballistic vest. The researchers wanted to ensure that the canines could wear these vests 

on duty after testing completed. Handlers were consulted prior to purchasing the vests. 

According to Law Enforcement Officers Killed and Assaulted (LEOKA), the most 

common ballistic threat police officers face in the field is a 9 mm bullet (FBI-LEOKA).  

Law enforcement canines will likely face the same threats as their human counterparts. 

Commercially available canine armor is tested to human standards and is categorized 

based on the same threats. NIJ Threat Level II (tested to provide protection for 9 mm 

and 357 caliber rounds) ballistic vests for canines were selected for research.   

To locate the most commonly purchased canine armor, a list of all available 

canine armor manufacturers was compiled and each was contacted.  In addition, 7 non-
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profit organizations which raise money to purchase canine vests for officers were 

contacted.  Sales could not be quantified when speaking with the armor manufacturers; 

therefore, the information given by the non-profit organizations was crucial.  At the time 

of the study, the two most commonly purchased brands by the 7 non-profits were Point 

Blank and International Armor.  One of the non-profits stated they had supplied over 

700 vests purchased from Point Blank.  This was by far the largest sample identified by 

the organizations.  Based on these data, the most commonly purchased canine vest 

was determined and purchased.   

The NIJ Threat Level II canine ballistic vests were purchased from Point Blank 

Body Armor (Model BII threat level II; Pompano Beach, FL) (Figure 6.1).  The vest is 

constructed from a combination of Twaron and Honeywell materials. The armor packets 

are tested to the NIJ 0101.06 ballistic resistance of body armor standard (NIJ-0101.06, 

2008). The median and dry areal densities of the armor are 4.49 kg/m2 and 4.25 kg/m2, 

respectively.  The thickness of the armor panel is 0.58 cm. The overall weight of the 

armor panel and carrier was 2.25 kg (4.95 lbs).  

Each canine was measured to determine the appropriate vest size based on 

manufacturers guidelines. Three measurements were used: body length (from between 

the scapulae to the top of the tail), circumference of the neck, and circumference of the 

thoracic cavity (just caudal of front legs). The average neck, chest circumference and 

body length were 54.6 ± 2.5 cm (21.5 ± 1.0 in), 83.8 ± 4.8 cm (33.0 ± 1.9 in), and 66.0 ± 

2.8 cm (26.0 ± 1.1 in), respectively.     
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was conducted three times, consecutively, without the body armor and then three times, 

consecutively, with the body armor, when possible.    

6.2.4 Experimental Design  

 The primary focus of this study was to evaluate the effect of ballistic vests on 

canine performance.  Each canine was tested once over the span of two separate days.  

Each test day was divided into two sections: canines completing the three tasks without 

armor followed by canines completing the same three tasks with armor.  Collecting 

three trials per task was not always possible. Canines 4 and 5 (collected on test day 2) 

had physical conditions restricting participation. The evaluation began with the suspect 

search (one trial per canine), followed by the agility course (three consecutive trials, if 

possible, per canine), and finally apprehension (three consecutive trials, if possible, per 

canine). Agility trials generated continuous exercise for approximately 10 minutes while 

the apprehension trials generated approximately 5 minutes of continuous exercise. 

Once the canines finished the tasks without the armor there was a break, approximately 

30 minutes, to allow canines to recover and return to a baseline core body temperature 

prior to starting the trials with ballistic armor.  

Canine 1 started the lineup completing the suspect search once without the vest.   

Core temperatures were taken before and after the suspect search for each canine.  

The pre-suspect search temperature was used as their baseline or their resting core 

body temperature. Canines 2 and 3 followed, completing the suspect search once 

without the vest. Next, canines began the agility exercise, again, starting with Canine 1. 

Canine 1 completed three trials of the agility, consecutively, without the vest. Core body 

temperature was recorded before the trials began, between each trial, and immediately 
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after the canine completed the third trial.  Canines 2 and 3 were asked to complete 

three trials as well, and once completed; Canine 1 started the apprehension exercise.  

Canine 1 completed three trials of apprehension without armor. Core body temperatures 

were again recorded before the trials began, between each trial, and after the final trial 

was completed.  Canines 2 and 3 followed. To remain consistent, the same schedule 

was followed while the canines were wearing the armor. Sequence was continued on 

the second day of testing for Canines 4 and 5.  

6.2.5 Data Collection 

Three main parameters were collected during testing: time to complete tasks, 

core body temperature during the tasks, and video for further analysis. The handlers 

were also asked to complete a qualitative survey to aid in the understanding of how the 

canines performed. 

Time to complete tasks 

The time to complete the tasks was measured using Smartspeed gates (Fusion 

Sport, Australia).  This system is a wireless and freely configurable timing system 

(Figure 6.9).  The remote unit has a laser that reflects back; when the connection is 

broken the time will either start or stop depending on how the gate is set up.  Each gate 

consists of a remote unit and a reflector. These gates provide an accurate and reliable 

method of timing the canines to within 0.01 seconds.   
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broken down by obstacle and the handlers were asked to rate (on a scale from 1 to 5) 

the overall obedience and general mobility of the canine. The canine’s ability to 

apprehend a suspect with and without armor was rated (on a scale from 1 to 5) based 

on the following categories: speed, jumping ability, overall obedience, and general 

mobility.  Additionally, handlers were asked to judge whether the armor distracted the 

canine during these exercises.  An example of the survey is included in Appendix E. 

6.2.6 Statistical Analysis 

A mixed-model ANOVA was performed to determine the overall effect of trial 

number (1,2,3), armor status (with and without), and interaction between both on 

completion times and core body temperature during the agility (each obstacle was 

evaluated separately when analyzing completion times) and apprehension tasks.  If a 

significant interaction was found between trial number and armor, the post-hoc Fisher’s 

LSD was performed. The significant level was set at α = 0.05.   

6.3 Results  

Data were collected from five Macomb County Sheriff canines.  Six agreed to 

participate, however, once the vests were received, it was determined that the vest did 

not properly fit one of the canines and the canine was removed from the study.  The 

testing took place on two non-consecutive days.  The first day, three canines were 

evaluated with average temperature during testing at 71.1 ± 4.5ºF and peak relative 

humidity of 28.5%.  The second day, two canines were evaluated with average 

temperature during testing at 64.6 ± 4.4ºF and peak relative humidity of 94%.  
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6.3.1 Completion Time   

Detailed completion times are listed in Table 6.1 - Table 6.3. Times for the 

suspect search exercise are listed in Table 6.1.  The beginning of the suspect search 

was missed on video for Canine 3 while not wearing armor.  Although statistical analysis 

could not be run, the general trend seemed to be an increase in time when armor was 

added.   

Table 6.1: 
Time for suspect search completion with and without armor 

 Suspect Search 
Time (s) 

Canine 1  
No Armor 21.77 

Armor 21.20 
Canine 2  

No Armor 29.90 
Armor 34.90 

Canine 3  
No Armor - 

Armor 39.67 
Canine 4  

No Armor 28.00 
Armor 42.63 

Canine 5  

No Armor 37.30 

Armor 46.43 

 

Some completion time data points were either not collected or were removed for 

apprehension or agility tasks (Table 6.2 and Table 6.3). Canines 4 and 5 had physical 

issues that the handlers did not want to push for fear of injury, therefore 5 data points 

for agility were missed for each canine and 1 apprehension data point was missed for 

Canine 5.  Additionally, Canine 4 had issues with the A-frame obstacle while wearing 

the vest leading to 2 data points not being collected.  Canine 2 had similar issues with 
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the A-frame, also missing 2 data points.  Data points were removed if the time recorded 

did not accurately represent the time it took the canine to complete the task. Canines 1, 

2, and 4 stopped after the third hurdle (testing included 6 hurdles), thus creating a 

longer completion time for the hurdles. Three data points were removed. 

Table 6.2:  
Detailed completion time for each canine and trial during agility 

  No Armor Time (s) Armor Time (s) No Armor Armor 
ID Obstacle Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 

3 
Average  Average 

C
an

in
e 

1 Hurdle 7.13 6.77 10.00a 8.10 6.83 7.37 7.97 ± 1.77 7.43 ± 0.64 
A-frame 5.63 3.93 4.93 6.07 10.37 6.33 4.83 ± 0.85 7.59 ± 2.41 
Jump 1.07 1.03 1.13 0.97 1.17 1.30 1.08 ± 0.05 1.14 ± 0.17 
Crawl 2.03 2.00 2.00 1.77 2.27 2.27 2.01 ± 0.02 2.10 ± 0.29 
Catwalk 10.37 10.57 11.03 11.60 15.27 17.40 10.66 ± 0.34 14.76 ± 2.93 

C
an

in
e 

2 Hurdle 6.87 6.90 6.83 13.63a 6.97 6.97 6.87 ± 0.03 9.19 ± 3.85 
A-frame 2.57 2.37 2.33 - 3.07 - 2.42 ± 0.13 3.07 
Jump 1.00 1.00 1.03 1.00 1.27 1.17 1.01 ± 0.02 1.14 ± 0.13 
Crawl 1.33 1.37 1.43 2.60 2.40 1.53 1.38 ± 0.05 2.18 ± 0.57 
Catwalk 9.97 10.07 11.97 18.27 15.37 11.17 10.67 ± 1.13 14.93 ± 3.57 

C
an

in
e 

3 Hurdle 6.67 6.60 6.60 8.80 6.90 6.83 6.62 ± 0.04 7.51 ± 1.12 
A-frame 2.73 3.00 2.67 3.97 3.53 3.87 2.80 ± 0.18 3.79 ± 0.23 
Jump 1.30 1.67 1.23 1.57 1.53 1.30 1.40 ± 0.23 1.47 ± 0.15 
Crawl 1.77 1.73 1.67 2.57 3.83 3.00 1.72 ± 0.05 3.13 ± 0.64 
Catwalk 12.83 11.23 11.60 11.83 11.80 12.43 11.89 ± 0.84 12.02 ± 0.36 

C
an

in
e 

4 Hurdle 10.80a 7.30 7.00 8.50 8.80 - 8.37 ± 2.11 8.65 ± 0.21 
A-frame 4.63 5.60 3.77 - - - 4.67 ± 0.92 - 
Jump 1.30 1.37 1.10 1.33 1.27 - 1.26 ± 0.14 1.30 ± 0.05 
Crawl 2.10 2.26 2.67 6.53 4.07 - 2.34 ± 0.29 5.30 ± 1.74 
Catwalk 12.63 9.20 10.86 19.60 18.03 - 10.90 ± 1.72 18.82 ± 1.11 

C
an

in
e 

5 Hurdle 6.73 6.50 6.73 9.00 8.63 - 6.66 ± 0.13 8.82 ± 0.26 
A-frame 3.07 3.17 3.23 5.83 10.03 - 3.16 ± 0.08 7.93 ± 2.97 
Jump 1.07 1.00 1.13 1.20 1.30 - 1.07 ± 0.07 1.25 ± 0.07 
Crawl 1.53 1.73 1.47 4.03 2.50 - 2.25 ± 1.08 3.27 ± 1.08 
Catwalk 9.93 10.63 7.83 13.10 17.17 - 9.47 ± 1.46 15.13 ± 2.88 

a Data point is an outlier and was removed for analysis   
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Table 6.3: 
Detailed completion time for each canine and trial during apprehension 

 No Armor Time (s) Armor Time (s) No Armor Armor 

ID Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Average Average 

1 4.38 3.94 3.80 4.36 4.32 4.26 4.04 ± 0.30 4.31 ± 0.05
2 3.82 3.70 3.68 3.88 3.79 3.86 3.73 ± 0.07 3.84 ± 0.05

3 3.74 3.72 3.66 3.95 3.96 4.03 3.71 ± 0.04 3.98 ± 0.04

4 4.45 4.50 4.40 4.96 5.35 4.75 4.45 ± 0.05 5.02 ± 0.31

5 3.99 4.06 4.03 4.54 4.10 - 4.03 ± 0.04 4.32 ± 0.31
 

In order to determine the effect of armor on apprehension and agility times, data 

were combined for all canines.  Average time data are listed in Table 6.4. For each task 

there was a statistical increase in time while the canines wore armor.  

Table 6.4: 
Average apprehension and agility times with and without armor 

Activity Armor N Time (s) P - value 

Apprehension No 14 4.0 ± 0.3 
< 0.001 

Yes 14 4.3 ± 0.5 

Agility         

          Hurdles  
No 13 6.8 ± 0.2 

< 0.001 

Yes 12 7.8 ± 0.9  

         A-frame 
No 15 3.6 ± 1.1 

0.001 

Yes 9 5.9 ± 2.7 

   Jump 
No 15 1.2 ± 0.2  

0.032 

Yes 13 1.3 ± 0.2 

   Crawl 
No 15 1.8 ± 0.4 

< 0.001 

Yes 13 3.0 ± 1.3  

        Catwalk 
No 15 10.7 ± 1.3 

< 0.001 

Yes 13 14.8 ±  3.0 

                Values are mean ± SD 
                             †Mean is significantly higher compared to without vest mean (P < 0.05) 
 
 
 To determine if there was a fatigue effect on time to complete the tasks, the data 

were combined and compared based on trial number.  Average apprehension and 

agility times are listed in Table 6.5. A significant decrease was found during the trials for 
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the hurdle obstacle.  As the trial number increased the average time decreased.  There 

was also a significant interaction between the armor and trial number for the hurdles (P 

= 0.023). Post-hoc analysis found a statistical decrease in time while the canines were 

wearing armor between trials 1 and 3 during the hurdle obstacle (Tables 6.6 and 6.7) 

This was not found while the canines were not wearing armor.   

Table 6.5: 
Average apprehension and agility times for each trial 

Activity Trial 
Number  

N Time (s) P - value 

Apprehension 1 10 4.2 ± 0.4 

0.160 2 10 4.1 ± 0.5 

3 8 4.1 ± 0.4  

Agility         

          Hurdles  

1 8 7.7 ± 1.0 

0.007 2 10 7.2 ± 0.8 

3 7 6.9 ± 0.2 

         A-frame 

1 8 4.3 ± 1.4 

0.198 2 9 5.0 ± 3.1 
3 7 3.9 ± 1.4 

   Jump 

1 10 1.2 ± 0.2 

0.248 2 10 1.3 ± 0.2  

3 8 1.2 ± 0.1 

   Crawl 

1 10 2.6 ± 1.6 

0.421 2 10 2.4 ± 0.9 
3 8 2.0 ± 0.6 

      Catwalk 

1 10 13.0 ± 3.3 

0.667 2 10 12.9 ± 3.2 

3 8 11.8 ± 2.7 

                Values are mean ± SD 
                               †Mean is significantly higher compared to without vest mean (P < 0.05) 
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Table 6.6: 
Post-hoc analysis of hurdle time data without armor 

Hurdles 
Trial 

Number 
N Time (s) P - value 

 No Armor  

1 4 6.8 ± 0.2 
0.829 

2 5 6.8 ± 0.3 

1 4 6.8 ± 0.2 
0.743 

3 4 6.8 ± 0.2 

2 5 6.8 ± 0.3 
0.897 

3 4 6.8 ± 0.2 

                   Values are mean ± SD 
 
                           

 
Table 6.7: 
Post-hoc analysis of hurdle time data with armor 

Hurdles 
Trial 

Number 
N Time (sec) P – value 

 Armor  

1 4 8.6 ± 0.4 
0.073 

2 5 7.6 ± 1.0 

1 4 8.6 ± 0.4 
0.020† 

3 3 7.1 ± 0.3 

2 5 7.6 ± 1.0 
0.302 

3 3 7.1 ± 0.3 
               Values are mean ± SD 
                           †Mean is significantly higher compared to without vest mean (P < 0.05) 
 
  

Evaluations of within subject differences were not analyzed. Individually the 

canines performed very differently.  The average change in times for apprehension and 

agility are listed for each canine below (Tables 6.8 and 6.9).  For each canine there was 

an increase in average time when wearing the armor for both apprehension and agility.   
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Table 6.8: 
Change in average time for apprehension with and without armor 

Average ∆ Time (s) 
Apprehension  

Canine 1 
Canine 2 
Canine 3 
Canine 4 
Canine 5 

0.28 
0.12 
0.27 
0.57 
0.29 

    

 Table 6.9: 
     Change in average time for agility course with and without armor 

 Average ∆ Time (s)  
 Hurdles A-frame Jump Crawl Catwalk Average 
Canine 1 0.5 2.8 0.1 0.1 4.1 1.5 ± 1.8 
Canine 2 0.1 0.6 0.1 0.8 4.3 1.2 ± 1.7 
Canine 3 0.9 1.0 0.1 1.4 0.1 0.7 ± 0.6 
Canine 4 1.5 - 0.0 3.0 7.9 3.1 ± 3.4 
Canine 5 2.2 2.7 0.2 1.7 4.9 2.3 ± 1.7 
Average 1.0 ± 0.8 1.8 ± 1.1 0.1 ± 0.1 1.4 ± 1.1 4.3 ± 2.8  

     Averages are mean ± SD 
 
6.3.2 Core Body Temperature 

In order to compare the effect of armor on core body temperature, temperatures 

taken before and after apprehension and agility trials were combined for all canines.  

Average temperature data is listed in Table 6.10. A statistical increase in core body 

temperature while the canines wore armor was found for the apprehension task.     

Some core body temperature data points were either not collected or were 

removed from apprehension or agility data set. A total of three core body temperature 

data points were not collected. Once again, Canines 4 and 5 did not complete the third 

agility trial with the vest, resulting in 2 data points not being collected. Also, Canine 5 did 

not complete the third apprehension trial with the vest; therefore, 1 core temperature 

data point from the apprehension average was not collected. One core body 

temperature data point was removed from the apprehension data set. Canine 4 had an 
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abnormally low temperature that the authors attribute to the canine drinking water 

before temperature was noted.  Since this value was lowered due to water 

consumption, the data point was removed from analysis.   

Table 6.10: 
Comparison of average core body tempertures measured during apprehension and agility trials 
with and without armor 

Activity  Armor N Temperature (ºF) P - value

Apprehension 
No 19 102.4 ± 1.1 

< 0.001† 

Yes 19 103.1 ± 1.5 

Agility 
No 20 102.7 ± 1.1 

0.089
Yes 18 103.0 ± 1.2 

Values are mean ± SD 
†Mean is significantly higher compared to without vest mean (P < 0.05) 
 

  To determine if there was a cumulative effect on the core body temperature after 

multiple trials, the data were combined and compared based on the time point from 

which the temperature was taken.  Average core body temperatures from apprehension 

and agility trials are listed in Table 6.11. A statistically significant increase in core body 

temperature was found during apprehension trials. Core body temperature increased as 

the canines progressed through the three trials.  

Table 6.11: 
Comparison of average core body temperatures measured during apprehension and agility trials 

Activity Time Point N Temperature (ºF) P - value

Apprehension 

1 9 102.7 ± 1.4 

0.023† 
2 10 102.6 ± 1.5 

3 9 102.7 ± 1.4 

4 10 103.1 ± 1.2 

Agility 

1 10 102.5 ± 1.3 

0.136
2 10 102.9 ± 1.1 

3 8 103.1 ± 1.2 

4 10 103.5 ± 1.1 

Values are mean ± SD 
†Mean is significantly higher compared to without vest mean (P < 0.05) 
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As with completion time data, evaluations of within subject differences with 

regards to core body temperature were not analyzed. Core body temperatures recorded 

throughout the testing are included below for each canine (Figure 6.11 - Figure 6.15).  

The line graph in Figure 6.11 illustrates the temperature progression with time of 

Canine 1. The bar graph shows the percent change in temperature from the baseline 

temperature. The baseline temperature used to calculate the percent change was taken 

prior to the suspect search (102.0ºF no armor and 102.2ºF with armor). The peak 

temperature for Canine 1 without wearing armor was 102.8ºF. This was the final 

temperature reading, 57 minutes after recording baseline at 102.0ºF (0.014 

degree/min). The peak temperature while wearing the armor was recorded at 103.5 ºF.  

This measurement occurred following the agility and was 22 minutes following baseline 

reading at 102.2 ºF (0.06 degree/min).  Canine 1 exhibited an increasing body 

temperature during the activities with a cooling down period between agility and 

apprehension. 
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Table 6.12: 
Average score for canine performance based on handler assessment 

 Suspect Search Agility Apprehension 
Canine 1    

No Armor 5.0 ± 0.0 5.0 ± 0.0 4.5 ± 0.6 
Armor 5.0 ± 0.0 3.6 ± 0.8 3.0 ± 0.0 

Canine 2    
No Armor 5.0 ± 0.0 4.7 ± 0.8 5.0 ± 0.0 

Armor 5.0 ± 0.0 2.3 ± 1.1 4.0 ± 0.8 
Canine 3    

No Armor 4.0 ± 0.0 4.1 ± 0.4 4.8 ± 0.5 
Armor 4.0 ± 0.0 4.0 ± 0.8 4.0 ± 0.0  

Canine 4    
No Armor 5.0 ± 0.0 5.0 ± 0.0 4.0 ± 0.0 

Armor 4.0 ± 0.0 2.7 ± 1.0 4.0 ± 0.0 
Canine 5    

No Armor 5.0 ± 0.0 4.1 ± 0.9 4.3 ± 1.0 
Armor 5.0 ± 0.0 1.9 ± 1.1 4.0 ± 1.0 

 

Overall the handlers felt the suspect search was an easy task for the canines and 

that the armor was not a distraction.  The handlers noticed difficulties with the agility 

obstacles, primarily the crawl, catwalk, and A-frame obstacles.  Two handlers felt the 

armor was a distraction during the agility but felt it could be resolved with time and 

training.  During the apprehension trials the handlers did not feel the armor was a 

distraction but it did cause the canines to run slower and perhaps not jump as high.   

6.4 Discussion  

This study aimed to measure the effects of armor as it relates to core body 

temperature, focus, concentration, mobility, speed, and coordination.  Evaluation was 

conducted by having the canines complete a typical day of training. Training was 

performed in an outdoor, non-climate controlled facility.  Tasks were completed with and 

without armor.  During the trials: time, core body temperature, and video were recorded.   
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Suspect search and the handler evaluation were used to help evaluate the focus 

and concentration of the canines.  Based on the small sample size and data collected, it 

was difficult to draw substantive conclusions. Overall, the suspect search was a simple 

task for all the canines.  Additionally, searching for objects and people encompass a 

large portion of their job.  It is important to study whether armor could hinder that 

capability.  One limitation of this task was that it was not as controlled as the other 

exercises.  The times were not as consistent and there was only one trial for 

comparison.  There was some variation in techniques and how each canine checked 

the boxes and alerted to the correct box, therefore, it was challenging to determine 

when the canines found the suspect.  Even when comparing the data from one canine, 

there was variation in the manner of each trial. The times for the suspect search are 

difficult to compare and draw conclusions due to these inconsistencies which were 

unexpected. 

The handler evaluations gave insight into canine performance; however, it would 

have been helpful to evaluate the handlers’ preconceived notions regarding canine body 

armor. If handlers believed armor would hinder the ability to perform a task prior to 

testing, there could potentially be a bias in the evaluation. Generally the handlers 

scored their canine lower when wearing the armor. For future studies perhaps involving 

a third party judge, such as a certification judge, in evaluations would give a neutral 

perspective on performance.  For the purpose of this study, the evaluation revealed how 

the handlers felt about the armor and the canines’ performance with the armor.   

Overall this study found that the armor increased the time to complete both 

apprehension and agility tasks for these canines. When evaluating the core body 
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temperatures, there was a significant difference during the apprehensions trials.  

Collectively, the mean temperatures were higher while the canines were wearing armor.  

Even though the temperatures were statistically higher, the core body temperatures 

were still below those generally thought to be life threatening. The average core body 

temperature during agility trials, approximately 10 minutes of excursion, without wearing 

the armor was 102.7 ± 1.1ºF and 103.0 ± 1.2ºF with armor. The overall core body 

temperature during the apprehension trials, approximately 5 minutes of excursion, 

without wearing the armor was 102.4 ± 1.1ºF and 103.1 ± 1.5ºF while wearing armor. 

Peer reviewed articles have found that the rectal body temperature of racing, sporting, 

and detection canines can vary between 104ºF and 108ºF during strenuous activities 

without detectable adverse effects (Rose and Bloomberg, 1989; Steiss, Ahmad et al., 

2004; Angle and Gillette, 2011). Rectal temperature was not collected during this study 

which is the standard for recording temperature in canines. However, a differential may 

be present when comparing core body temperature to a rectal temperature at the same 

time point.  Observations made of military working dogs being monitored during bite and 

explosive detection work found rectal temperatures reached in excess of 108ºF while 

the core body temperatures were between 103-104ºF (Baker and Miller, 2013).  This 

may explain why some canines can perform and are not affected by higher rectal 

temperature.   

Both core body temperature and performance time were affected by the armor 

during the apprehension exercise. Core body temperature and time had a statistically 

significant increase. Since the trials were not randomized, it cannot be concluded 

whether the apprehension trial created the higher temperatures and longer trial times or 
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Canine 4 was not able to complete any of the A-frame attempts while wearing the 

armor.  Canines 1 and 5 were assisted by their handlers which allowed them to get over 

the peak of the A-frame.  This increased the time it took for them to complete the 

obstacle. Canine 3 did not need assistance however his average time increased by 

approximately 1.0 second to complete the obstacle with the armor.   

The catwalk required assistance in the beginning for the majority of the canines 

to get up the ladder while none needed assistance when they were not wearing armor. 

The most common issue was losing their footing on the ladder.  Canine 2 started to 

hesitate on the trial 3 and needed two attempts to make it up the stairs.  Canine 3 did 

not need his handlers’ assistance and his average times were very similar with and 

without the armor.  Canines 1, 2, 4, and 5 had an increased time of more than 4 

seconds when wearing the armor. 

The crawl obstacle helped identify a potential issue with the design of the canine 

armor.  The top of the crawl obstacle was 40.6 cm (16 in) from the ground.  The canines 

would lower themselves to slip under the obstacle, however, they did not lower 

themselves enough and the portion of the carrier between their scapulae impeded 

further movement (Figure 6.17).  This caused hesitation for most of the canines.  

Canines 1, 2, and 4 needed a “toy” thrown through the obstacle at least once to compel 

them to complete the obstacle.  Canine 3 needed no assistance from his handler.  The 

canines experienced no issues with the crawl obstacle while they were not wearing the 

canine armor.  Due to the inconsistencies the hesitations caused for each canine, the 

time was determined based on when the canines head went under the obstacle (during 

the successful attempt) to the point where the canine was fully out of the obstacle.   
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al. recommends waiting 30-60 minutes after ingestion of cool fluids to obtain an 

accurate core body temperature if the GI temperature pill was ingested just prior to 

exercise.  In humans, it was recommended that individuals ingest the pill approximately 

12 hours prior to the start of the measurement period and the effect of water ingestions 

was decreased. In this study, the canines ingested the pills 2 hours before the start of 

the measurement period.     

 The lack of funding led to a small sample size since vests needed to be 

purchased for each canine to ensure all canines were wearing the same model vest. 

Although the sample size was small, valuable information has been noted from this 

study and more data should be collected in this area.  Despite the fact that the canines 

were allowed to acclimate to the armor from a behavioral standpoint, they were not 

familiar with training in the armor.  Additionally, according to the handlers, situations 

where a canine will need to climb ladders or jump up tall walls are rare. Therefore, this 

may not be an issue in real world situations; however, if the canines are trained in armor 

they could be more prepared.  

The armor did increase the time it took for the canine to complete both 

apprehension and agility tasks and the core body temperature did increase during 

apprehension trials. The increase in core body temperature was still within a clinically 

acceptable range and was not considered injurious.  The increase in time should be 

evaluated further in future testing to determine if the increase diminishes with practice 

and training. It is crucial to train in equipment that may be needed in the field.  

Additionally, for future testing, the experimental design should be randomized to better 

evaluate the performance while wearing armor. 
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CHAPTER 7 – EVALUATION OF PROPOSED CANINE BODY ARMOR TESTING 

PROTOCOL  

7.1 Introduction 

Canine armor is currently being manufactured and purchased by a variety of 

organizations. One interesting aspect of the working canine is their positive public 

perception. Communities want to ensure that the canines working with their local law 

enforcement agencies have protection. Funds are typically raised to help defray the cost 

of canine armor resulting in the body armor being donated to the agency and canine. 

There has yet to be any published research evaluating the efficacy of canine armor at 

preventing serious injuries.  

The armor panels used in available canine armor are currently tested to the NIJ 

ballistic resistant standard (NIJ-0101.06, 2008). It was determined that 44 mm of 

deformation into a ROMA Plastilina modeling clay, No. 1, backing material correlated to 

a 6% probability of lethality.  These reports concluded that humans would be even less 

likely to sustain serious injuries under similar conditions (Goldfarb, Ciurej et al., 1975; 

Metker, Prather et al., 1975; Prather, Swann et al., 1977). This standard was not 

evaluated for its effectiveness at protecting small individuals or small animals from life-

threatening injuries as a result of behind armor blunt trauma.   

The aim of this study was to evaluate behind armor canine thoracic response of a 

commercially available canine armor that has been tested to the current armor 

standard. This was achieved by quantifying the biomechanical response and resulting 

injury severity. Impact force, thoracic deflection, spine/sternum/rib acceleration, and rib 
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strain were collected for each specimen.  Necropsies were performed following the 

impact events to verify injury severity.  

7.2 Methodology and Materials 

7.2.1 Canine Ballistic Armor  

 Prior to procuring vests it was important to determine the most common ballistic 

threat to law enforcement officers in the U.S. and the most commonly purchased canine 

ballistic vest. The researchers wanted to ensure that the canines could wear these vests 

on duty after testing completed. Handlers were consulted prior to purchasing the vests. 

According to Law Enforcement Officers Killed and Assaulted (LEOKA), the most 

common ballistic threat police officers face in the field is a 9 mm bullet (FBI-LEOKA).  

Law enforcement canines will likely face the same threats as their human counterparts. 

Commercially available canine armor is tested to human standards and is categorized 

based on the same threats. NIJ Threat Level II (designed and tested to provide 

protection for 9 mm and 357 caliber rounds) ballistic vests for canines were selected for 

research.   

To locate the most commonly purchased canine armor, a list of all available 

canine armor manufacturers was compiled and each was contacted.  In addition, 7 non-

profit organizations which raise money to purchase canine vests for officers were 

contacted.  Sales could not be quantified when speaking with the armor manufacturers; 

therefore, the information given by the non-profit organizations was crucial.  At the time 

of the study, the two most commonly purchased brands by the 7 non-profits were Point 

Blank and International Armor.  One of the non-profits stated they had supplied over 

700 vests purchased from Point Blank.  This was by far the largest sample identified by 
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Wayne State University’s Institutional Animal Care and Use Committee (IACUC) 

(Appendix A). Detailed measurements were taken of each specimen including thoracic 

circumference, lateral depth of thorax, and dorsal-ventral length (spine to sternum). 

Lateral depth was a measurement taken at the site of impact. The thoracic ratio was 

used to further describe the shape of the thoracic cavity (dorsal-ventral depth/lateral 

length). Age and exact breed could not be verified.   

Pre-test x-rays were taken to ensure there was no presence of skeletal fractures.  

If fractures or other issues were detected the canine was not tested.  Once the canines 

were x-rayed and weighed, the specimens were stored at 0ºF until testing. Specimens 

were allowed to return to room temperature for at least 18-24 hours prior to applying 

instrumentation.  Once sufficiently thawed the instrumentation process began, at least 

24 hours prior to testing.   

Table 7.1: 
Detailed description of post mortem canine specimens tested 

ID Gender Breed 
Weight 

(kg) 

Thorax 
Circumference 

(cm) 
Depth 
(cm) 

Thoracic 
Ratio 

15 M Rottweiler 28.6 64.5 18.5 1.07 
16 M Rottweiler 34.4 69.0 20.5 1.09 

 

7.2.3 Data Collection 

A TDAS Pro data acquisition system (DTS Inc., Seal Beach, CA) was used for 

collecting all data.  The data were sampled at 38,000 Hz with a four-pole Butterworth 

anti-aliasing filter with a cutoff off frequency of 4,300 Hz. Tri-axial blocks of single axis 

accelerometers and strain gages were mounted to skeletal structures (Figure 7.2). 

Three single axis accelerometers (7264D/C 2K Endevco, Meggitt Sensing Systems, 

Irvine, CA) were mounted to each custom aluminum tri-axial block to measure 
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High speed video was collected for each test. Two camera views were recorded, 

a camera (10,000 fps, Redlake MotionXtra HG-100K) was located perpendicular to the 

shot path and a second camera (1,000 fps, Kodak EktraPro HG Imager Model 2000) 

was located overhead to record the global movement of the specimen during the 

impact.     

7.2.4 Experimental Design 

A harness was created to allow a natural standing position (spine horizontal) for 

a quadruped. Specimens were placed in the harness and suspended from an adjustable 

system (Figure 7.8). Following the NIJ 0101.06 Standard, 9 mm 124 grain FMJ RN 

bullet traveling at 398 ± 9.1 m/s (1306 ± 30 fps) was used for all tests (NIJ-0101.06, 

2008). Commercially available ammunition was purchased and the rounds were 

uploaded to achieve the desired velocity. The ammunition was fired using a Universal 

Receiver (UR-01, Rapid City, SD, H.S. Precision Inc.) which allowed for laser sighting 

and remote firing.  The shot path was aligned such that the bullet struck perpendicular 

to the armor packet. A chronograph (Model 35P, Austin, TX, Oehler Research Inc.) with 

three photo-electric screens (Model 57, Austin, TX, Oehler Research Inc.) was used to 

measure the velocity of each shot.   

Two impacts were performed on each specimen; one to each of the bilateral 

seventh ribs. Both impacts were tested under the same conditions with the Point Blank 

armor covering the impact site.  
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 Prior to processing, the chestband output was filtered. The chestband data were 

then post-processed using custom software, CrashStar V2.5 (Transportation Research 

Center Inc., East Liberty, OH).  This software has never been used with a canine model.  

Since the chestband can be installed at any point along the circumference of the chest, 

the program requires the user to input a “sternum” or “spine” location from the band 

placement on the specimen.  For this study, the “spine” location was identified based on 

the initial position of the chestband on the specimen. This orientation allows the 

chestband to plot the thoracic motion and deformation resulting from the lateral impact 

at each time point.  

 The program output is the x- and y-axis position (mm) of each of the active gages 

at each time point. The deflection of the thorax was found using a half-chest method 

(Maltese, Eppinger et al., 2002; Kuppa, Eppinger et al., 2003).  For this method the 

“spine” is known and the “sternum” location was identified as the gage diametrically 

opposite the spine gage (Figure 7.12).  A line was constructed between the spine and 

the sternum. The perpendicular distance between the gages near the impact site and 

the spine-sternum line was calculated for each time point.  It was determined that the 

sternum does accelerate during impact creating movement with the sternum gage; 

therefore, the spine-sternum line is adjusted at each time point following the sternum 

gage movement. Half-chest compression was calculated using the initial magnitude 

from the gage generating peak deflection to the spine-sternum line.  The time to peak 

deflection (TD) was determined based on the point of contact as established by the force 

sensor.  Rate at which the thoracic cavity reached peak deflection (VD) was calculated 

by dividing the peak deflection by the time to peak deflection (TD).   
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7.2.7 Statistical Analysis 

An ANOVA was used to compare mean differences between armor types (8-ply, 

15-ply, and Point Blank) and measured engineering variables.  Significance was set at α 

= 0.05. If there was significance between the armor types, post-hoc Tukey test was 

used to further analyze the difference.   

7.3 Results 

Detailed descriptions of the thoracic canine response while wearing the Point 

Blank canine armor are listed in Table 7.3.  Average peak impact force behind the Point 

Blank armor was 5,746.8 ± 1,405.1 N.  The average peak deflection was determined to 

be 15.4 ± 6.0 mm and average peak compression was 17.5 ± 7.9%.  The average time 

to peak deflection was 4.1 ± 1.1 ms and the average rate at which peak deflection was 

achieved was 4.2 ± 2.4 m/s.  Peak deflection illustrations for each test are located in 

Appendix C. Pictures of the impacted rib for each test are located in Appendix D. 
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Comparisons of the average biomechanical responses with respect to the armor 

type were completed using an ANOVA (Table 7.4).  The majority of the means were 

found to have no significant difference. The force behind the armor did seem to differ 

between the armor types (P < 0.001).  Further analysis of the force means were tested 

with a post-hoc Tukey method. The average peak force behind the Point Blank armor 

was statistically higher when compared to the 8-ply packet (P < 0.001) and the 15-ply 

packet (P < 0.001).  

Table 7.4: 
Armor comparison of thoracic response 

 8-ply 15-ply Point Blank P-value 
Force (N) 3090.2 ± 851.3 2786.7 ± 960.2 5746.9 ± 1405.1 <0.001† 
γmaxR7 (μs) 7172.9 ± 599.6 5813.7 ± 1230.3 7649.1 ± 455.4 0.057 
AR7 (g) 1251.6 ± 343.5 1406.2 ± 596.0 1845.3 ± 299.7 0.127 

ASt (g) 521.3 ± 332.6 405.2 ± 296.1 175.1 ± 102.5 0.155 

ASp (g) 181.4 ± 96.0 174.5 ± 139.2 108.2 ± 54.7 0.522 

VD (m/s) 17.1 ± 28.4 10.6 ± 15.5 4.0 ± 2.1 0.547 

TD (ms) 6.5 ± 5.9 4.8 ± 3.6 4.2 ± 1.1 0.586 

Deflection (mm) 16.5 ± 11.6 13.8 ± 8.1 15.4 ± 6.1 0.803 

γmaxR8 (μs) 3980.1 ± 2989.4 4154.7 ± 1805.1 3739.1 ± 31.4 0.979 

Compression (%) 16.8 ± 11.8 16.5 ± 10.1 17.5 ± 8.0 0.986 

AR8 (g) 1025.8 ± 655.4 1062.3 ± 929.2 1081.7 ± 614.9 0.991 

*Abbreviated measurements: AR7-Resultant Acceleration rib 7, AR8-Resultant Acceleration rib 8, ASp-
Resultant Acceleration of spine, ASt-Resultant Acceleration of sternum, γmaxR7- Shear strain rib 7, γmaxR8- 
Shear strain rib 8 
†Armor type generated statistical significance with respect to mean values (P < 0.05)    

Three of four tests with the Point Blank armor resulted in fracture classification 2 

and the remaining test resulted in no fracture.  Similar to the 8-ply and 15-ply packets, 

damage occurred to the seventh rib only. 
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7.4 Discussion 

The canine thoracic response was evaluated for behind armor blunt trauma using 

a certified canine ballistic vest.  The armor proved to protect the canine thoracic cavity 

from the 9 mm threat similar to the 8-ply and 15-ply armor packets previously tested.  

The ammunition was captured by the armor panels for all 4 tests conducted.  The Point 

Blank BII armor is made of 16 layers of Twaron aramid material (quilted) and 21 layers 

of Honeywell Spectra Shield®. Although the accelerations, rib strains, and peak 

deflections were comparable to those collected with the 8-ply and 15- ply packets, the 

behind armor force resulting from the Point Blank armor was significantly higher.  The 

Point Blank armor may have allowed for more flexibility which could explain the higher 

force behind the armor. The current study included a rather small sample size and 

significant results should be interpreted with care. The injuries resulting from the 

increased force, based on observation, were not more severe.  Three of the four 

impacts resulted in a non-displaced fracture while none of the impacts resulted in a 

displaced fracture.  

The armor tested was certified to the NIJ 0101.06 standard and according the 

manufacturer, BFS from a new BII model armor with a 9 mm of comparable velocity 

ranges from 27 – 29 mm depending on the armor size.  A conditioned armor resulted in 

BFS measurements ranging from 28 - 31 mm.  As previously determined from PMCS 

and clay testing the recommended depth in clay for a 50% probability of rib fracture in a 

canine was found to be 28.5 mm (Chapter 5).  Although the Point Blank armor was not 

tested on clay during this study, the manufacture claims and the resulting injuries during 

the current test could support the finding that there is a reasonable risk of rib fracture for 
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a canine with the current standard.  Similar to their human counterpart, if a canine is 

shot in the area protected by armor, even if no visible indication of injury exists, there is 

a likelihood of skeletal injury and veterinary care should be sought shortly after the 

incident occurs.   

The study was not without limitation.  The sample size was rather small with only 

two canines being tested and a total of 4 shot were evaluated.  Even though the weight 

of the canines were considered reasonable with one above median and one below 

median of all PMCS specimens, future testing should investigate a range of weights. 

Further testing should be conducted to evaluate additional armor threat levels and 

ballistic threats since injuries and injury severity will likely vary.  
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CHAPTER 8 - CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

The overall goal of this research was to further the understanding of canine 

ballistic armor and the biomechanical thoracic response of a canine to blunt ballistic 

impacts.  The focus of this research was to determine if ballistic penetration is a concern 

for law enforcement canines in the field, evaluate the thoracic response of the canine to 

various conditions of blunt ballistic impact, and determine whether commercially 

available canine armor restricts the abilities of the canine and their efficacy. 

 Civilian law enforcement canines are at risk for ballistic penetrating trauma.  The 

third leading cause of traumatic death from 2002 – 2012 was found to be as a result of 

ballistic penetration. Post-mortem canine specimens were used to establish 

biomechanical response and injury tolerance of the canine thorax. The biomechanical 

response was determined for three armor conditions: 8-ply Kevlar® packet, 15-ply 

Kevlar® packet, and Point Blank Level II canine armor.  Fracture of the impacted rib 

occurred as a result of behind armor blunt trauma in over half of the tests.  Fourteen of 

the 23 impacts to the 8 and 15-ply packets resulted in a fracture, 5 of which were 

complete displacements of the rib bone. The majority of non-displaced rib fractures and 

all of the displaced rib fractures occurred with the 8-ply.  The Point Blank armor tests (n 

= 4) resulted in 3 non-displaced fractures of the impacted rib.  The greater the number 

of layers the greater the protective ability of the armor against behind armor blunt 

trauma which was expected.   

Measured and calculated engineering parameters were not found to be 

significant predictors of rib fracture.  Measuring the backface signature (BFS) in clay of 

the armor packets did, however, prove to predict rib fractures in the post-mortem canine 
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specimens.  Both depth and volume of BFS were significant predictors.  The current NIJ 

0101.06 standard sets the BFS limit at 44 mm while this study found that a 50% 

probability of rib fracture for canines could occur at 28.5 mm.  This finding was possibly 

supported by the PMCS testing with Point Blank armor.  According to the manufacture 

the BFS for armor used should have been 27-29 mm in clay and the testing did result in 

rib fracture during 3 of the 4 tests.  

The performance and core body temperature of canines were evaluated with the 

Point Blank Level II canine armor, resulting in increased mean completion times for 

apprehension and agility tasks and increased mean core body temperature during 

apprehension tasks. Although the temperature increase was statistically significant, the 

core body temperature remained below temperatures that are thought to be life-

threatening.  Overall, the armor tested protected the canine thoracic cavity from a 

penetrating bullet wound.  Behind armor blunt trauma was recorded and in some cases 

resulting rib fractures were rather severe.  Additional testing should be done to evaluate 

the thoracic response to higher energy rounds and different levels of armor protection 

which may be more applicable to military canines. Further testing should also evaluate 

the soft tissue and internal organ damage that may occur as a result of behind armor 

blunt trauma.  

 This study provides preliminary data to an area of research that is lacking 

valuable information. Canines have proven to be effective partners in both military and 

law enforcement applications. Evaluating ways to improve training and protection is 

beneficial to those they work besides and the communities they help protect.   
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ABSTRACT 

 

A BIOMECHANICAL ASSESSMENT OF CANINE BODY ARMOR 

by 

SARAH STOJSIH SHERMAN 

August 2015 

Advisor: Cynthia Bir, Ph.D. 

Major: Biomedical Engineering 

Degree: Doctor of Philosophy 

The purpose of this research was to establish a biomechanical assessment of 

canine body armor with a primary focus on civilian law enforcement canines.  The 

specific aims included: 1) the compilation of canine casualty data to determine 

commonly reported causes of death/euthanasia while in service for civilian law 

enforcement canines, 2) the evaluation of the biomechanical response of the canine 

related to a behind armor blunt impact, 3) the identification of an injury criterion that will 

best predict canine thoracic injury as a result of behind armor blunt trauma, 4) 

correlation of the behind armor blunt trauma response to the standard backface testing 

medium (clay), and 5) the evaluation of commercially available canine body armor to 

determine if the armor inhibits or distracts the canine from performing tasks.   

The three leading causes of traumatic death in civilian law enforcement canines 

were as a result of being struck by a vehicle, heat injury, and ballistic penetrating 

trauma. The biomedical response of the canine thoracic cavity was determined for three 

armor conditions: 8-ply packet, 15-ply packet, and commercially available Point Blank 
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canine armor.  Fracture of the impacted rib occurred as a result of behind armor blunt 

trauma in the majority cases.  Measured and calculated engineering parameters were 

not identified as significant predictors of rib fracture.  Testing the backface signature 

(BFS) in clay of the armor packets did prove to predict rib fractures in the post-mortem 

canine specimens.  Both depth in clay and volume of indentation were significant 

predictors.  The Point Blank armor did prove to increase the time it took canines to 

complete certain training tasks and also increased their core body temperature. The 

results of this research provide an initial biomechanical assessment of canine body 

armor and the response of the canine thorax during behind armor blunt impact.  The 

data from this study could help future research better evaluate and protect law 

enforcement canines. 
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